新的神经网络架构

上一篇文章“ 神经网络。一切都去哪儿了?”
本文简要地讨论了一些神经网络体系结构,主要是在检测对象的任务上,以便找到(或至少试图找到)在这个快速发展的领域中的未来方向。
本文并不假装是全面的,并且对对角阅读文章有很好的理解。作者确信在他撰写本文时,还会出现更多新的体系结构。例如,请参见:https://paperswithcode.com/area/computer-vision。
20年内的物体检测 -概述了20多年内用于检测物体的400多篇文章。
神经网络动物园是神经网络的动物园,其内容在不断变化。
一段有趣的视频,其中包含有关如何设计神经网络的建议:“ 如何设计神经网络 ”。
高效网

EfficientNet — , (, scaling) ( ) , . (compound scaling method), // . «Neural Architecture Search» (NAS, 1, 2, ) EfficientNets.
- «EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks»
- TensorFlow
- 1, 2.1, 2.2, 3
EfficientDet

EfficientDet . . EfficientNet , BiFPN, «» / .

— EfficientDet == EfficientNet + BiFPN + /
- «EfficientDet: Scalable and Efficient Object Detection»
- TensorFlow
- PyTorch
- 1
SpineNet

SpineNet . Google Research , state-of-the-art (SOTA) .
. , ( ). () - « » (Convolutional Encoder-Decoder Neural Network). « » . , – (). (backbone model), , , . , « » , ().
SpineNet - ( ). (Neural Architecture Search, NAS). SpineNet (Average Precision, AP). .

– ResNet (ResNet-50-FPN )
- «SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization»
- «SpineNet: »
- SpineNet online demo
CenterNet

CenterNet CornerNet-Lite 2019 (c « »).
CenterNet , , . , , 3D-, , .. (image features) . , (heatmap). . . CenterNet 3D .
3 : , .

– CenterNet
CornerNet CenterNet. CornerNet , : (bounding box). (anchor box), SSD YOLO, . « », .
CornerNet «corner pooling» . CenterNet «center pooling» .

– «corner pooling» . «max-pooling» «max-pooling». (feature maps) .
- CenterNet «CenterNet: Keypoint Triplets for Object Detection» + 1 + 2
- CornerNet-Lite «CornerNet-Lite: Efficient Keypoint Based Object Detection» +
- CornerNet: «CornerNet: Detecting Objects as Paired Keypoints» + +
ThunderNet

ThunderNet . . , , ARM ( ) 24.1 fps (frames per second, ) MobileNet-SSD.
- «ThunderNet: Towards Real-time Generic Object Detection»
- GitHub

— ThunderNet
CSPNet

CSPNet (Cross Stage Partial Network) Darknet, . , (residual neural networks, ResNet). , . , . CSPNet , . , CSPNet (feature pyramid network, FPN).
- «CSPNet: A New Backbone that can Enhance Learning Capability of CNN»
- 1, 2

—
DenseNet

— DenseNet c 5 k = 4. .

— DenseNet
DenseNet (Densely Connected Convolutional Network) 2017 . ResNet (Deep Residual Network) , CNN . (dense) , . , , ResNet, («») , (, channel-wise concatenation) . DenseNet , . , DenseNet .
- «Densely Connected Convolutional Networks»
- Keras + CoLab
- Torch ,
SAUNet
SAUNet (Shape Attentive U-Net) 2020 , .

— SAUNet : (texture stream); (gated shape stream). U-Net DenseNet-121 ( DenseNet), U-Net « » (dual attention decoder block).
SAUNet : U-Net, DenseNet, Gated-SCNN Squeeze-and-Excitation Networks.
- «SAUNet: Shape Attentive U-Net for Interpretable Medical Image Segmentation»
- PyTorch
DetNASNet

— DetNASNet
, , , (object detection) (image classification) . DetNASNet Neural Architecture Search (NAS) , . , NAS, .. , . 44 GPU- COCO. , ResNet-101, FLOP-.
- «DetNAS: Backbone Search for Object Detection»
- PyTorch
SM-NAS

— () (mAP) COCO.
SM-NAS Structural-to-Modular NAS (SM-NAS): ; .
- .
- «SM-NAS: Structural-to-Modular Neural Architecture Search for Object Detection»
AmoebaNet

— AmoebaNet-A. . «Normal Cell». «Reduction Cell».
AmoebaNet . AmoebaNet . AmoebaNet (search space), NASNet. TPU (Tensor Processing Units) .
- «Regularized Evolution for Image Classifier Architecture Search»
Graph Neural Network

Graph Neural Network , — , — . , .. - . . : PyTorch Geometric PyTorch, Graph Nets TensorFlow, Deep Graph .
- CoLab
- by Siraj Raval
- DGL (Deep Graph Library)
Growing Neural Cellular Automata

—
Growing Neural Cellular Automata , «» . (, ..). . «» 16 . «» , , JPEG (), MP3 (), MPEG () ZIP ().
, , () .
- Distill
- Colab notebook
- by Yannic Kilcher
- «»
Spiking neural network . . 1952 , . , . . , , , .
- (ru, en)
- PapersWithCode.com
DPM
DPM, Deformable Part Model detector, . ( CoLab) (HOG). - 2009 , , «Object Detection in 20 Years: A Survey», Integral Channel Features (ICF), .
«» , , , . , «Deformable Part Models are Convolutional Neural Networks» DPM .
- «Deformable Part Models are Convolutional Neural Networks» + MatLab Caffe
:
- , AutoML, « », Neural Architecture Search (NAS NASNet);
- (attention mechanism), ;
- « » , (backbone) ;
- , state-of-the-art (SOTA) .
. , . , , . « » , — , .
PS我推荐视频博客ML Tokyo,作者在其中解释并在Keras上建立神经网络。他的CNN研讨会正是像我这样的新手“神经编码器”所需要的。
感谢您的关注!