Web2Text:深度结构化的网页内容提取

哈Ha!我向您介绍作者Thijs Vogels,Octavian-Eugen Ganea和Carsten Eickhof组成团队撰写的文章“ Web2Text:深层结构化锅炉拆卸”的译文。


网页是许多自然语言处理和信息检索任务的宝贵信息源。从这些文档中有效提取核心内容对于派生应用程序的性能至关重要。为解决此问题,我们引入了一种新模型,该模型将页面上的文本块分类并标记为模HTML板块或包含主要内容的块。我们的方法使用卷积神经网络(HTML文档的对象模型Document Object Model, DOM的特征获得的势能之上使用隐马尔可夫模型Convolutional Neural Network, CNN所提出的方法在质量上提高了从网页提取文本数据的性能。


1.简介


自然语言处理和信息检索的现代方法高度依赖大量文本。万维网是此类应用程序的不竭内容来源。但是,一个普遍的问题是网页不仅包含主要内容(文本),而且还包含广告,超链接列表,导航,其他文章的预览,横幅等。该模板内容通常会对派生应用程序的性能产生负面影响[15,24]。将网页上的主要文本与文献中的其余(模板)内容分开的任务被称为“删除标准模板”,“分割网页”或“提取内容”。针对此问题的已知流行方法使用基于规则的算法或机器学习。最成功的方法是先将输入网页拆分为文本块,然后将其二进制{1, 0}将每个块标记为主要内容或模板。在本文中,我们在神经电势的基础上提出了隐马尔可夫模型,用于去除图案。我们利用卷积神经网络的能力,研究基于π的符号的复杂非线性组合的块中一元和配对势DOM。在预测期间,我们找到最可能的块标签{1, 0},使用维特比算法[23]最大化标签序列的联合概率。我们的方法的有效性在比较数据的标准集上得到了证明。


本文档的其余部分结构如下。第2节概述了不同作者的相关工作。第3节正式定义了提取主要内容的问题,描述了对数据块进行分段的过程并详细说明了我们的模型。第4部分展示了我们在几个参考数据集中用于从网页提取内容的方法的优势。


2.相关工作概述


HTML- [7] Body Text Extractor (BTE). BTE , , HTML- -. , BTE , . , : (1) HTML, , , (2) , -.


DOM, HTML [11,19,6]. , , <table>, .


DOM . . [24] [22]. , -, -, -. .


. [10] , . HTML , , , . , , (), , (). DOM [4,21]. . [3] DOM, , . . [21] / , DOM .


«», . FIASCO . [2] (SVM) HTML- , DOM , . . [17] SVM . . [20] , , . , . CleanEval [1].


1


. 1. Web2Text. DOM (Collapsed DOM) - , . DOM. , , : . . , , , .


, DOM. , , . , - , .


3.


— - (- ) [1]. . 1.


3.1.


, - (X) HTML-. ( DOM) Jsoup [12].


2


. 2. DOM. : HTML, — DOM, — DOM.


DOM, i) , , ii) , , : , <br>, <checkbox>, <head>, <hr>, <iframe>, <img>, <input>. DOM. DOM- . 2 DOM, (<ul>), DOM. (, « »), . Collapsed () DOM (CDOM).


3.2.


. - , , . - , : i) HTML, ii) DOM, iii) DOM . DOM, . , , HTML. , DOM- ( #text) . , , . , Web2Text , , — .


3.3.


— , , , . , CDOM . .


. , CDOM, , CDOM. 128 , , « - <p>», « », « », « », « - » .. , , .


. 25 . . , , , 2, 3, 4 > 4. , HTML-, ..


3.4. (Convolutional Neural Network, CNN)


, , . , . pi (li = 1), pi (li = 0) , li i , . . pi, i + 1 (li = 1, li + 1 = 1), pi, i + 1 (li = 1, li + 1 = 0), pi, i + 1 (li = 0, li + 1 = 1) pi, i + 1 (li = 0, li + 1 = 0) — . .


CNN 5 , ReLU , (50, 50, 50, 10, 2) (50, 50, 50, 10, 4) . 1 (1, 1, 3, 3, 3) . CNN , , , . CNN , , , . , , . 2 , softmax. 4 , . , i . (dropout) 0,2 L2 10-4.


-:


f1


lii, θunary — , n — .


-:


f2


θpairwise — .


3.5.


- . (b0, b1, ..., bn) (l0, l1, ..., ln) ∈ {0, 1}n :


f3


λ — . λ = 0,1 . [23], CNN.


4.


. Web2Text - . , . Web2Text .


4.1.


CleanEval 2007 [1] . 188 -. (60 ) (676 ). (55 ) (5 ). 10000 , , . CleanEval : (531 ), (58 ) (148 ).


. , ( CleanEval) . “- — ” ( ). , , . (, [20]) . (, ) (-, ). .


-, 10 . - ( ). , - , « ». -. , , , , 2/3 .


4.2.


[14] 10–3 5000 . - 128 - 9 . , . , .


4.3.


Web2Text , . BTE [7] Unfluff [8] . [17,16] — , , (. 1). CRF [20] CleanEval. (Conditional Random Field, CRF) , . , 4.1, CRF - . , , , , CleanEval. CleanEval, , .


. CRF [20] 9 705 . , CNN 17 960 , CNN 12 870 . 30 830. , .


4.4.


1 . , . , Web2Text (Accuracy), Recall F1 , CleanEval. , , , 3.2. , , Web2Text CNN, .


11


1. - CleanEval. : (55 — , 5 — , 676 — ) (531 — , 58 — , 148 — ). , .


. Web2Text 54 -; 35 DOM , 19 . Macbook Intel Core i5 2,8 .


4.5.


, , , . HTML, .


- ClueWeb12. . CW12-A 733M - (27,3 ) CW12-B 52M (1,95 ). Indri. 50 TREC Web Track 2013 [5].


t2


2. . (*) HTML. (†) , .


2 , -. HTML . , , †. , , CW12-A, , , CW12-B. - . , (QL) , (RM). , . , (BTE, article-ext, large-ext, Unfluff) , . (CRF, Web2Text) . , Web2Text 0,05. , Web2Text CleanEval, 4.1.


5.


Web2Text -. , CRF [9], , DOM . CleanEval . , , , .


6.


, - .
, .


  1. Marco Baroni, Francis Chantree, Adam Kilgarriff, and Serge Sharoff. CleanEval: a competition for cleaning web pages. In LREC, 2008.
  2. Daniel Bauer, Judith Degen, Xiaoye Deng, Priska Herger, Jan Gasthaus, Eugenie Giesbrecht, Lina Jansen, Christin Kalina, Thorben Kräger, Robert Märtin, Martin Schmidt, Simon Scholler, Johannes Steger, Egon Stemle, and Stefan Evert. FIASCO: Filtering the internet by automatic subtree classification, osnabruck. In Building and Exploring Web Corpora: Proceedings of the 3rd Web as Corpus Workshop, incorporating CleanEval, volume 4, pages 111–121, 2007.
  3. Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. Page-level template detection via isotonic smoothing. In Proceedings of the 16th international conference on World Wide Web, pages 61–70. ACM, 2007.
  4. Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach to webpage segmentation. In Proceedings of the 17th international conference on World Wide Web, pages 377–386. ACM, 2008.
  5. Kevyn Collins-Thompson, Paul Bennett, Fernando Diaz, Charlie Clarke, and Ellen Voorhees. Overview of the TREC 2013 web track. In Proceedings of the 22nd Text Retrieval Conference (TREC’13), 2013.
  6. Sandip Debnath, Prasenjit Mitra, Nirmal Pal, and C Lee Giles. Automatic identification of informative sections of web pages. IEEE transactions on knowledge and data engineering, 17(9):1233–1246, 2005.
  7. Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Fact or fiction: Content classification for digital libraries. Unrefereed, 2001.
  8. Adam Geitgey. Unfluff – an automatic web page content extractor for node.js!, 2014.
  9. John Gibson, Ben Wellner, and Susan Lubar. Adaptive web-page content identification. In Proceedings of the 9th annual ACM international workshop on Web information and data management, pages 105–112. ACM, 2007.
  10. Thomas Gottron. Content code blurring: A new approach to content extraction. In Database and Expert Systems Application, 2008. DEXA’08. 19th International Workshop on, pages 29–33. IEEE, 2008.
  11. Suhit Gupta, Gail Kaiser, David Neistadt, and Peter Grimm. DOM-based content extraction of HTML documents. In Proceedings of the 12th international conference on World Wide Web, pages 207–214. ACM, 2003.
  12. Jonathan Hedley. Jsoup HTML parser, 2009.
  13. Rong Jin, Alex G Hauptmann, and ChengXiang Zhai. Language model for information retrieval. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pages 42–48. ACM, 2002.
  14. Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
  15. Christian Kohlschütter. A densitometric analysis of web template content. In Proceedings of the 18th international conference on World wide web, pages 1165– 1166. ACM, 2009.
  16. Christian Kohlschütter et al. Boilerpipe – boilerplate removal and fulltext extraction from HTML pages. Google Code, 2010.
  17. Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate detection using shallow text features. In Proceedings of the third ACM international conference on Web search and data mining, pages 441–450. ACM, 2010.
  18. Victor Lavrenko and W Bruce Croft. Relevance based language models. In Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pages 120–127. ACM, 2001.
  19. Shian-Hua Lin and Jan-Ming Ho. Discovering informative content blocks from web documents. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 588–593. ACM, 2002.
  20. Miroslav Spousta, Michal Marek, and Pavel Pecina. Victor: the web-page cleaning tool. In 4th Web as Corpus Workshop (WAC4)-Can we beat Google, pages 12–17, 2008.
  21. Fei Sun, Dandan Song, and Lejian Liao. Dom based content extraction via text density. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 245–254. ACM, 2011.
  22. Karane Vieira, Altigran S Da Silva, Nick Pinto, Edleno S De Moura, Joao Cavalcanti, and Juliana Freire. A fast and robust method for web page template detection and removal. In Proceedings of the 15th ACM international conference on Information and knowledge management, pages 258–267. ACM, 2006.
  23. Andrew J Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. In The Foundations Of The Digital Wireless World: Selected Works of AJ Viterbi, pages 41–50. World Scientific, 2010.
  24. Lan Yi, Bing Liu, and Xiaoli Li. Eliminating noisy information in web pages for data mining. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 296–305. ACM, 2003.


All Articles