在这里,我将描述一个通过Avro序列化数据并将其传输到Kafka的示例。对于Avro,有一个用于Kafka的数据串行器,它在工作中使用电路注册表,并支持在单独部署的服务器上进行版本控制。这里只有一个序列化程序,例如,如有必要,可以在数据库中实现版本控制。
Github项目

这就是Avro准备的序列化数据的样子。有一个数据的标题描述,然后是数据本身。事实证明,它紧凑而快速,没有重复的字段名称,数据格式是二进制的。使用数据模式添加数据时会检查数据。
电路示例:
{"namespace": "avro",
"type": "record",
"name": "Person",
"fields": [
{"name": "name", "type": "string"},
{"name": "age", "type": ["int", "null"]}
]
}
使用Spring Shell,在第一个命令中,我将添加到人员列表中,并根据Avro方案进行检查:
@ShellComponent
public class Commands {
private List<GenericRecord> records = new ArrayList<>();
@ShellMethod("add user to list for send")
public void add(String name, int age) {
GenericRecord record = new GenericData.Record(SchemaRepository.instance().getSchemaObject());
record.put("name", name);
record.put("age", age);
records.add(record);
}
GenericRecord是基于该方案形成的Avro记录。
public class SchemaRepository {
private static final String SCHEMA = "{\"namespace\": \"avro\",\n" +
"\"type\": \"record\",\n" +
"\"name\": \"Person\",\n" +
"\"fields\": [\n" +
" {\"name\": \"name\", \"type\": \"string\"},\n" +
" {\"name\": \"age\", \"type\": [\"int\", \"null\"]}\n" +
"]\n" +
"}\n";
private static final Schema SCHEMA_OBJECT = new Schema.Parser().parse(SCHEMA);
private static SchemaRepository INSTANCE = new SchemaRepository();
public static SchemaRepository instance() {
return INSTANCE;
}
public Schema getSchemaObject() {
return SCHEMA_OBJECT;
}
}
将外壳人员添加到控制台,并将主题发送到Kafka:

@ShellComponent
public class Commands {
private List<GenericRecord> records = new ArrayList<>();
final private KafkaTemplate template;
public Commands(KafkaTemplate template) {
this.template = template;
}
@ShellMethod("send list users to Kafka")
public void send() {
template.setDefaultTopic("test");
template.sendDefault("1", records);
template.flush();
records.clear();
}
这是Kafka本身的Avro序列化器:
public class AvroGenericRecordSerializer implements Serializer<List<GenericRecord>> {
private Schema schema = null;
@Override public void configure(Map<String, ?> map, boolean b) {
schema = (Schema) map.get("SCHEMA");
}
@Override public byte[] serialize(String arg0, List<GenericRecord> records) {
byte[] retVal = null;
ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
GenericDatumWriter<GenericRecord> datumWriter = new GenericDatumWriter<>(schema);
DataFileWriter dataFileWriter = new DataFileWriter<>(datumWriter);
try {
dataFileWriter.create(schema, outputStream);
for (GenericRecord record : records) {
dataFileWriter.append(record);
}
dataFileWriter.flush();
dataFileWriter.close();
retVal = outputStream.toByteArray();
} catch (IOException e) {
e.printStackTrace();
}
return retVal;
}
@Override public void close() {
}
}
Kafka生产者配置:
@Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, properties.getBootstrapServers().get(0));
props.put(ProducerConfig.RETRIES_CONFIG, 0);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "com.example.model.AvroGenericRecordSerializer");
props.put("SCHEMA", SchemaRepository.instance().getSchemaObject());
return props;
}
在此处指定序列化类-“ com.example.model.AvroGenericRecordSerializer”
,新参数“ SCHEMA”是模式对象,AvroGenericRecordSerializer在准备二进制数据时需要它
在控制台的接收端,我们看到接收到的数据:

Avro解串器
public class AvroGenericRecordDeserializer implements Deserializer {
private Schema schema = null;
@Override
public void configure(Map configs, boolean isKey) {
schema = (Schema) configs.get("SCHEMA");
}
@Override
public Object deserialize(String s, byte[] bytes) {
DatumReader<GenericRecord> datumReader = new GenericDatumReader<>(schema);
SeekableByteArrayInput arrayInput = new SeekableByteArrayInput(bytes);
List<GenericRecord> records = new ArrayList<>();
DataFileReader<GenericRecord> dataFileReader = null;
try {
dataFileReader = new DataFileReader<>(arrayInput, datumReader);
while (dataFileReader.hasNext()) {
GenericRecord record = dataFileReader.next();
records.add(record);
}
} catch (IOException e) {
e.printStackTrace();
}
return records;
}
}
与Kafka消费者相似:
@Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, properties.getBootstrapServers().get(0));
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "com.example.model.AvroGenericRecordDeserializer");
props.put("SCHEMA", SchemaRepository.instance().getSchemaObject());
return props;
}
从Docker wurstmeister / kafka-docker使用的Kafka ,您可以使用任何其他
Github项目
阿帕罗