具有PyTorch和Sklearn的神经网络的集成

神经网络非常流行。它们的主要优势在于,它们能够概括其他算法显示质量较低的相当复杂的数据。但是,如果神经网络的质量仍然不能令人满意怎么办?


乐团来了...


什么是合奏


一组机器学习算法是使用多个(不一定不同)模型而不是一个模型。也就是说,我们首先训练每个模型,然后结合它们的预测。事实证明,我们的模型共同构成了一个更复杂的模型(就泛化能力而言,即“理解”数据的能力),通常称为元模型通常,元模型不再在我们的初始数据样本上训练,而是在其他模型的预测上训练。它似乎考虑了所有模型的经验,这有助于减少错误。


计划


  1. 首先,我们看一个简单的PyTorch模型并获得其质量。
  2. 然后,我们将使用Scikit-learn组装几个模型,并学习如何达到更高的水平

一个模型


因此,我们将使用Sklearn的Digits数据集,因为可以通过两行代码非常简单地获取它:


#  
from sklearn.datasets import load_digits
import numpy as np
import matplotlib.pyplot as plt

# ,  
x, y = load_digits(n_class=10, return_X_y=True)

让我们看看数据如何:


print(x.shape)
>>> (1797, 64)
print(np.unique(y))
>>> array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

index = 0

print(y[index])
plt.imshow(x[index].reshape(8, 8), cmap="Greys")

美丽的脚趾


x[index]
>>> array([ 0.,  0.,  5., 13.,  9.,  1.,  0.,  0.,  0.,  0., 13., 15., 10.,
       15.,  5.,  0.,  0.,  3., 15.,  2.,  0., 11.,  8.,  0.,  0.,  4.,
       12.,  0.,  0.,  8.,  8.,  0.,  0.,  5.,  8.,  0.,  0.,  9.,  8.,
        0.,  0.,  4., 11.,  0.,  1., 12.,  7.,  0.,  0.,  2., 14.,  5.,
       10., 12.,  0.,  0.,  0.,  0.,  6., 13., 10.,  0.,  0.,  0.])

是的,数字的取值范围是0到15.因此,我们需要归一化:


from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

#      
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
                                                    shuffle=True, random_state=42)
print(x_train.shape)
>>> (1437, 64)
print(x_test.shape)
>>> (360, 64)

我们使用StandardScaler:它将所有数据从-1转移到-1的边界。我们仅在训练样本上对其进行训练,以使其不适应测试-因此测试后模型的得分将更接近真实数据的得分:


scaler = StandardScaler()
scaler.fit(x_train)

我们将数据标准化:


x_train_scaled = scaler.transform(x_train)
x_test_scaled = scaler.transform(x_test)

火炬的时间!


import torch
from torch.utils.data import TensorDataset, DataLoader
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam

一个简单的卷积网络足以证明:


class SimpleCNN(nn.Module):
  def __init__(self):
    super(SimpleCNN, self).__init__()

    #  
    self.conv1 = nn.Conv2d(in_channels=1, out_channels=3, kernel_size=5, stride=1, padding=2)
    self.conv1_s = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=5, stride=2, padding=2)
    self.conv2 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=1)
    self.conv2_s = nn.Conv2d(in_channels=6, out_channels=6, kernel_size=3, stride=2, padding=1)
    self.conv3 = nn.Conv2d(in_channels=6, out_channels=10, kernel_size=3, stride=1, padding=1)
    self.conv3_s = nn.Conv2d(in_channels=10, out_channels=10, kernel_size=3, stride=2, padding=1)

    self.flatten = nn.Flatten()
    #   
    self.fc1 = nn.Linear(10, 10)

  #   ""   
  def forward(self, x):
    x = F.relu(self.conv1(x))
    x = F.relu(self.conv1_s(x))
    x = F.relu(self.conv2(x))
    x = F.relu(self.conv2_s(x))
    x = F.relu(self.conv3(x))
    x = F.relu(self.conv3_s(x))

    x = self.flatten(x)
    x = self.fc1(x)
    x = F.softmax(x)

    return x

定义一些超参数:


batch_size = 64 #  
learning_rate = 1e-3 #  
epochs = 200 #   

首先,将数据转换为PyTorch使用的张量:


x_train_tensor = torch.tensor(x_train_scaled.reshape(-1, 1, 8, 8).astype(np.float32))
x_test_tensor = torch.tensor(x_test_scaled.reshape(-1, 1, 8, 8).astype(np.float32))

y_train_tensor = torch.tensor(y_train.astype(np.long))
y_test_tensor = torch.tensor(y_test.astype(np.long))

PyTorch , — . — , X y ( ), DataLoader — , <X, y> 64 :


train_dataset = TensorDataset(x_train_tensor, y_train_tensor)
train_loader = DataLoader(train_dataset, batch_size=batch_size)

test_dataset = TensorDataset(x_test_tensor, y_test_tensor)
test_loader = DataLoader(test_dataset, batch_size=batch_size)

, :


simple_cnn = SimpleCNN().cuda() #   gpu,   ,  
criterion = nn.CrossEntropyLoss()
optimizer = Adam(simple_cnn.parameters(), lr=learning_rate)

:


for epoch in range(epochs): #  200 
  simple_cnn.train()
  train_samples_count = 0 #   ,     
  true_train_samples_count = 0 #    
  running_loss = 0

  for batch in train_loader:
    x_data = batch[0].cuda() #      gpu
    y_data = batch[1].cuda()

    y_pred = simple_cnn(x_data)
    loss = criterion(y_pred, y_data)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step() #   

    running_loss += loss.item()

    y_pred = y_pred.argmax(dim=1, keepdim=False)
    true_classified = (y_pred == y_data).sum().item() #       
    true_train_samples_count += true_classified
    train_samples_count += len(x_data) #   

  train_accuracy = true_train_samples_count / train_samples_count
  print(f"[{epoch}] train loss: {running_loss}, accuracy: {round(train_accuracy, 4)}") #  

  #   
  simple_cnn.eval()
  test_samples_count = 0
  true_test_samples_count = 0
  running_loss = 0

  for batch in test_loader:
    x_data = batch[0].cuda()
    y_data = batch[1].cuda()

    y_pred = simple_cnn(x_data)
    loss = criterion(y_pred, y_data)

    loss.backward()

    running_loss += loss.item()

    y_pred = y_pred.argmax(dim=1, keepdim=False)
    true_classified = (y_pred == y_data).sum().item()
    true_test_samples_count += true_classified
    test_samples_count += len(x_data)

  test_accuracy = true_test_samples_count / test_samples_count
  print(f"[{epoch}] test loss: {running_loss}, accuracy: {round(test_accuracy, 4)}")

,

- Torch' , . . 20 .


[180] train loss: 40.52328181266785, accuracy: 0.6966
[180] test loss: 10.813781499862671, accuracy: 0.6583
[181] train loss: 40.517325043678284, accuracy: 0.6966
[181] test loss: 10.811877608299255, accuracy: 0.6611
[182] train loss: 40.517088294029236, accuracy: 0.6966
[182] test loss: 10.814386487007141, accuracy: 0.6611
[183] train loss: 40.515315651893616, accuracy: 0.6966
[183] test loss: 10.812204122543335, accuracy: 0.6611
[184] train loss: 40.5108939409256, accuracy: 0.6966
[184] test loss: 10.808713555335999, accuracy: 0.6639
[185] train loss: 40.50885498523712, accuracy: 0.6966
[185] test loss: 10.80833113193512, accuracy: 0.6639
[186] train loss: 40.50892996788025, accuracy: 0.6966
[186] test loss: 10.809209108352661, accuracy: 0.6639
[187] train loss: 40.508036971092224, accuracy: 0.6966
[187] test loss: 10.806900978088379, accuracy: 0.6667
[188] train loss: 40.507275462150574, accuracy: 0.6966
[188] test loss: 10.79791784286499, accuracy: 0.6611
[189] train loss: 40.50368785858154, accuracy: 0.6966
[189] test loss: 10.799399137496948, accuracy: 0.6667
[190] train loss: 40.499858379364014, accuracy: 0.6966
[190] test loss: 10.795265793800354, accuracy: 0.6611
[191] train loss: 40.498780846595764, accuracy: 0.6966
[191] test loss: 10.796114206314087, accuracy: 0.6639
[192] train loss: 40.497228503227234, accuracy: 0.6966
[192] test loss: 10.790620803833008, accuracy: 0.6639
[193] train loss: 40.44325613975525, accuracy: 0.6973
[193] test loss: 10.657087206840515, accuracy: 0.7
[194] train loss: 39.62049174308777, accuracy: 0.7495
[194] test loss: 10.483307123184204, accuracy: 0.7222
[195] train loss: 39.24516046047211, accuracy: 0.7613
[195] test loss: 10.462445378303528, accuracy: 0.7278
[196] train loss: 39.16947162151337, accuracy: 0.762
[196] test loss: 10.488057255744934, accuracy: 0.7222
[197] train loss: 39.196797251701355, accuracy: 0.7634
[197] test loss: 10.502906918525696, accuracy: 0.7222
[198] train loss: 39.395434617996216, accuracy: 0.7537
[198] test loss: 10.354896545410156, accuracy: 0.7472
[199] train loss: 39.331292152404785, accuracy: 0.7509
[199] test loss: 10.367400050163269, accuracy: 0.7389

, : .


, : 74% . Not great, not terrible.


!


Bagging. : , , . : "" , - . .


sklearn ensembles, . — , BaggingClassifier:


import sklearn
from sklearn.ensemble import BaggingClassifier

. sklearn, — , sklearn.base.BaseEstimator. , . fit ( ), predict_proba, ( , ), predict ( ), .


, "" .


. , , .


-, ( 2 — get_params set_params), , . , net_type, __init__ net_type.


-, , , ( sklearn , ) copy, deepcopy . , , () , , .


class PytorchModel(sklearn.base.BaseEstimator):
  def __init__(self, net_type, net_params, optim_type, optim_params, loss_fn,
               input_shape, batch_size=32, accuracy_tol=0.02, tol_epochs=10,
               cuda=True):
    self.net_type = net_type #    
    self.net_params = net_params #  
    self.optim_type = optim_type #    
    self.optim_params = optim_params #  
    self.loss_fn = loss_fn #   loss'

    self.input_shape = input_shape #   
    self.batch_size = batch_size #  
    self.accuracy_tol = accuracy_tol #  ,    -- 
    self.tol_epochs = tol_epochs #      
    self.cuda = cuda #    gpu

: fit. , — , Loss, . : , ? . , 200 ( ). , . — , accuracy . , accuracy . , (tol_epochs) ( accuracy , accuracy_tol).


  def fit(self, X, y):
    self.net = self.net_type(**self.net_params) #        
    # `**self.net_params` ,   -            
    if self.cuda:
      self.net = self.net.cuda() #    gpu,    
    self.optim = self.optim_type(self.net.parameters(), **self.optim_params) #   ,  
    #         

    uniq_classes = np.sort(np.unique(y)) #   
    self.classes_ = uniq_classes #      sklearn --      `classes_`

    X = X.reshape(-1, *self.input_shape) #         
    #       DataLoader
    x_tensor = torch.tensor(X.astype(np.float32))
    y_tensor = torch.tensor(y.astype(np.long))
    train_dataset = TensorDataset(x_tensor, y_tensor)
    train_loader = DataLoader(train_dataset, batch_size=self.batch_size,
                              shuffle=True, drop_last=False)
    last_accuracies = [] #    accuracy    `tol_epochs` 
    epoch = 0
    keep_training = True
    while keep_training:
      self.net.train() #        (,    BatchNormalization)
      train_samples_count = 0 #    
      true_train_samples_count = 0 #     

      for batch in train_loader:
        x_data, y_data = batch[0], batch[1]
        if self.cuda:
          x_data = x_data.cuda()
          y_data = y_data.cuda()

        #    
        y_pred = self.net(x_data)
        loss = self.loss_fn(y_pred, y_data)

        #   
        self.optim.zero_grad()
        loss.backward()
        self.optim.step()

        y_pred = y_pred.argmax(dim=1, keepdim=False) #    ,     
        true_classified = (y_pred == y_data).sum().item() #     
        true_train_samples_count += true_classified
        train_samples_count += len(x_data)

      train_accuracy = true_train_samples_count / train_samples_count #  accuracy
      last_accuracies.append(train_accuracy)

      if len(last_accuracies) > self.tol_epochs:
        last_accuracies.pop(0)

      if len(last_accuracies) == self.tol_epochs:
        accuracy_difference = max(last_accuracies) - min(last_accuracies) # ,     accuracy   `tol_epochs` 
        if accuracy_difference <= self.accuracy_tol:
          keep_training = False #   ,  

. — , Loss, - :


  def predict_proba(self, X, y=None):
    #   ,    fit,  DataLoader,     
    X = X.reshape(-1, *self.input_shape)
    x_tensor = torch.tensor(X.astype(np.float32))
    if y:
      y_tensor = torch.tensor(y.astype(np.long))
    else:
      y_tensor = torch.zeros(len(X), dtype=torch.long)
    test_dataset = TensorDataset(x_tensor, y_tensor)
    test_loader = DataLoader(test_dataset, batch_size=self.batch_size,
                              shuffle=False, drop_last=False)

    self.net.eval() #    ,   `train`,     BatchNormalization,    -    
    predictions = [] # ,   
    for batch in test_loader:
      x_data, y_data = batch[0], batch[1]
      if self.cuda:
        x_data = x_data.cuda()
        y_data = y_data.cuda()

      y_pred = self.net(x_data)

      predictions.append(y_pred.detach().cpu().numpy()) #   ,    numpy-      

    predictions = np.concatenate(predictions) #          
    return predictions

:


  def predict(self, X, y=None):
    predictions = self.predict_proba(X, y) #   
    predictions = predictions.argmax(axis=1) #    ,    
    return predictions

class PytorchModel(sklearn.base.BaseEstimator):
  def __init__(self, net_type, net_params, optim_type, optim_params, loss_fn,
               input_shape, batch_size=32, accuracy_tol=0.02, tol_epochs=10,
               cuda=True):
    self.net_type = net_type
    self.net_params = net_params
    self.optim_type = optim_type
    self.optim_params = optim_params
    self.loss_fn = loss_fn

    self.input_shape = input_shape
    self.batch_size = batch_size
    self.accuracy_tol = accuracy_tol
    self.tol_epochs = tol_epochs
    self.cuda = cuda

  def fit(self, X, y):
    self.net = self.net_type(**self.net_params)
    if self.cuda:
      self.net = self.net.cuda()
    self.optim = self.optim_type(self.net.parameters(), **self.optim_params)

    uniq_classes = np.sort(np.unique(y))
    self.classes_ = uniq_classes

    X = X.reshape(-1, *self.input_shape)
    x_tensor = torch.tensor(X.astype(np.float32))
    y_tensor = torch.tensor(y.astype(np.long))
    train_dataset = TensorDataset(x_tensor, y_tensor)
    train_loader = DataLoader(train_dataset, batch_size=self.batch_size,
                              shuffle=True, drop_last=False)
    last_accuracies = []
    epoch = 0
    keep_training = True
    while keep_training:
      self.net.train()
      train_samples_count = 0
      true_train_samples_count = 0

      for batch in train_loader:
        x_data, y_data = batch[0], batch[1]
        if self.cuda:
          x_data = x_data.cuda()
          y_data = y_data.cuda()

        y_pred = self.net(x_data)
        loss = self.loss_fn(y_pred, y_data)

        self.optim.zero_grad()
        loss.backward()
        self.optim.step()

        y_pred = y_pred.argmax(dim=1, keepdim=False)
        true_classified = (y_pred == y_data).sum().item()
        true_train_samples_count += true_classified
        train_samples_count += len(x_data)

      train_accuracy = true_train_samples_count / train_samples_count
      last_accuracies.append(train_accuracy)

      if len(last_accuracies) > self.tol_epochs:
        last_accuracies.pop(0)

      if len(last_accuracies) == self.tol_epochs:
        accuracy_difference = max(last_accuracies) - min(last_accuracies)
        if accuracy_difference <= self.accuracy_tol:
          keep_training = False

  def predict_proba(self, X, y=None):
    X = X.reshape(-1, *self.input_shape)
    x_tensor = torch.tensor(X.astype(np.float32))
    if y:
      y_tensor = torch.tensor(y.astype(np.long))
    else:
      y_tensor = torch.zeros(len(X), dtype=torch.long)
    test_dataset = TensorDataset(x_tensor, y_tensor)
    test_loader = DataLoader(test_dataset, batch_size=self.batch_size,
                              shuffle=False, drop_last=False)

    self.net.eval()
    predictions = []
    for batch in test_loader:
      x_data, y_data = batch[0], batch[1]
      if self.cuda:
        x_data = x_data.cuda()
        y_data = y_data.cuda()

      y_pred = self.net(x_data)

      predictions.append(y_pred.detach().cpu().numpy())

    predictions = np.concatenate(predictions)
    return predictions

  def predict(self, X, y=None):
    predictions = self.predict_proba(X, y)
    predictions = predictions.argmax(axis=1)
    return predictions

, :


base_model = PytorchModel(net_type=SimpleCNN, net_params=dict(), optim_type=Adam,
                          optim_params={"lr": 1e-3}, loss_fn=nn.CrossEntropyLoss(),
                          input_shape=(1, 8, 8), batch_size=32, accuracy_tol=0.02,
                          tol_epochs=10, cuda=True)

base_model.fit(x_train_scaled, y_train) #  

preds = base_model.predict(x_test_scaled) #    
true_classified = (preds == y_test).sum() #    
test_accuracy = true_classified / len(y_test) # accuracy

print(f"Test accuracy: {test_accuracy}")
>>> Test accuracy: 0.7361111111111112

.


meta_classifier = BaggingClassifier(base_estimator=base_model, n_estimators=10) # ,        

meta_classifier.fit(x_train_scaled.reshape(-1, 64), y_train) #    ,     ,  reshape'
>>> BaggingClassifier(
           base_estimator=PytorchModel(accuracy_tol=0.02, batch_size=32,
              cuda=True, input_shape=(1, 8, 8),
              loss_fn=CrossEntropyLoss(),
              net_params={},
              net_type=<class '__main__.SimpleCNN'>,
              optim_params={'lr': 0.001},
              optim_type=<class 'torch.optim.adam.Adam'>,
              tol_epochs=10),
          bootstrap=True, bootstrap_features=False, max_features=1.0,
          max_samples=1.0, n_estimators=10, n_jobs=None,
          oob_score=False, random_state=None, verbose=0,
          warm_start=False)

score accuracy :


print(meta_classifier.score(x_test_scaled.reshape(-1, 64), y_test))
>>> 0.95


, . . . , , ( "" - ).


?


-, . , Loss' - .


-, Boosting. Bagging' , , . ( ) . sklearn, Loss - .


, . , "" . , .



, . — - , , , , , .


. , Data science' . Computer vision, . ( — !) — FARADAY Lab. — , .


c:




All Articles