Golang + Phaser3 = MMORPG-我们为无尽的世界奠定了基础

图片

很难找到有关俄语资源的正确信息,也许此材料将使您了解创建多人游戏的一些基本知识以及更多内容。我计划撰写一系列有关创建2.5D MMORPG的文章,即在等轴测图中,我们的世界将分为由标题组成的程序生成的块。服务器将使用Golang语言编写,在我看来这非常适合,客户端部分将使用JavaScript-Phaser.js框架

创造世界一代


因此,在本文中,我们将在Golang上为MMO编写块生成器,我们暂时不考虑Phaser。对于过程生成,我们需要一个noise函数,我们将使用Perlin Noise,我建议您阅读本文并重写Go的代码或采用我的版本。

Perlin.go
package PerlinNoise

import (
	"math"
	"math/rand"
)

func Noise(x, y float32) float32 {
	//Coordinate left and top vertex square
	left := float32(math.Floor(float64(x)))
	top := float32(math.Floor(float64(y)))

	//Local coordinate
	localPoinX := x - left
	localPoiny := y - top

	topLeft := getRandomVector(left, top)
	topRight := getRandomVector(left+1, top)
	bottomLeft := getRandomVector(left, top+1)
	bottomRight := getRandomVector(left+1, top+1)
	//      
	DtopLeft := []float32{localPoinX, localPoiny}
	DtopRight := []float32{localPoinX - 1, localPoiny}
	DbottomLeft := []float32{localPoinX, localPoiny - 1}
	DbottomRight := []float32{localPoinX - 1, localPoiny - 1}

	// 
	tx1 := dot(DtopLeft, topLeft)
	tx2 := dot(DtopRight, topRight)
	bx1 := dot(DbottomLeft, bottomLeft)
	bx2 := dot(DbottomRight, bottomRight)

	//  
	pointX := curve(localPoinX)
	pointY := curve(localPoiny)

	//

	tx := lerp(tx1, tx2, pointX)
	bx := lerp(bx1, bx2, pointX)
	tb := lerp(tx, bx, pointY)
	return tb

}
func getRandomVector(x, y float32) []float32 {
	rand.Seed(int64(x * y))
	v := rand.Intn(3)

	switch v {

	case 0:
		return []float32{-1, 0}
	case 1:
		return []float32{1, 0}
	case 2:
		return []float32{0, 1}
	default:
		return []float32{0, -1}

	}
}
func dot(a []float32, b []float32) float32 {

	return (a[0]*b[0] + b[1]*a[1])
}
func lerp(a, b, c float32) float32 {

	return a*(1-c) + b*c

}
func curve(t float32) float32 {

	return (t * t * t * (t*(t*6-15) + 10))

}


让我们创建一个测试项目功能的小项目,这是我的项目的结构:

图片

将以下内容添加到main.go文件中:

func main() {
	var a, b float32= 1330, 2500
	v:= PerlinNoise.Noise(a/2500, b/2500)
	fmt.Println(v)
}

注意数字的类型,请始终明确指定类型,这将避免以后出现函数输出时出现问题:

-0.23416707

因此,我们具有噪声函数来生成我们的世界。让我们开始创建块。在其中创建Chunk目录和Chunk.go文件,并立即定义主要常量:

var TILE_SIZE = 16
var CHUNK_SIZE = TILE_SIZE * TILE_SIZE
var PERLIN_SEED float32 = 150

TILE_SIZE是我们将来的块的分辨率(以像素
单位)CHUNK_SIZE是的大小,在这种情况下为16 * 16
PERLIN_SEED-在这里您可以输入任何数字,数字越大,噪声越均匀,即 如果您想要小岛,那么如果大洲较高,则减少数量。

接下来,为坐标创建数据类型:

type Coordinate struct {
	X int 
	Y int 
}

这种类型将来对我们非常有用,现在我们将创建另一个重要的函数,以确定将来我们块的唯一坐标,我们将其称为ID:

func GetChunkID(x, y int) Coordinate {
	tileX := float64(float64(x) / float64(TILE_SIZE))
	tileY := float64(float64(y) / float64(TILE_SIZE))

	var ChunkID Coordinate
	if tileX < 0 {
		ChunkID.X = int(math.Floor(tileX / float64(TILE_SIZE)))
	} else {
		ChunkID.X = int(math.Ceil(tileX / float64(TILE_SIZE)))
	}
	if tileY < 0 {
		ChunkID.Y = int(math.Floor(tileY / float64(TILE_SIZE)))
	} else {
		ChunkID.Y = int(math.Ceil(tileY / float64(TILE_SIZE)))
	}
	if tileX == 0 {
		ChunkID.X = 1
	}
	if tileY == 0 {
		ChunkID.Y = 1
	}
	return ChunkID

}

确定块的ID的功能非常简单,我们只需将地图上的位置除以图块的大小,然后再将结果再除以图块的大小,并根据块的ID进行四舍五入,因为 我们的世界将在任何方向无休止地产生。

接下来,添加我们的构建块以创建块,这是图块和块本身:

type Chunk struct {
	ChunkID [2]int
	Map     map[Coordinate]Tile
}
type Tile struct {
	Key string
	X   int
	Y   int
}

该块包含一个图块图。磁贴存储其坐标和键(键是标题的类型:土地,水,山脉等)。

现在,让我们继续最重要的部分,即创建块的功能,我从项目中提取了工作功能,并为本文重新做了一些说明:

func NewChunk()
func NewChunk(idChunk Coordinate) Chunk {
	//    
	chunk := Chunk{ChunkID: [2]int{idChunk.X, idChunk.Y}}
	//   
	var chunkXMax, chunkYMax int
	//    
	var chunkMap map[Coordinate]Tile
	chunkMap = make(map[Coordinate]Tile)
	//     
	chunkXMax = idChunk.X * CHUNK_SIZE
	chunkYMax = idChunk.Y * CHUNK_SIZE
	switch {
	//      
	case chunkXMax < 0 && chunkYMax < 0:
		{
			for x := chunkXMax + CHUNK_SIZE; x > chunkXMax; x -= TILE_SIZE {
				for y := chunkYMax + CHUNK_SIZE; y > chunkYMax; y -= TILE_SIZE {
					//     
					posX := float32(x - (TILE_SIZE / 2))
					posY := float32(y + (TILE_SIZE / 2))
					tile := Tile{}

					tile.X = int(posX)
					tile.Y = int(posY)

					perlinValue := PerlinNoise.Noise(posX/PERLIN_SEED, posY/PERLIN_SEED)
					switch {
					case perlinValue < -0.01:
						tile.Key = "~" //
					case perlinValue >= -0.01 && perlinValue <= 0.5:
						tile.Key = "1" //

					case perlinValue > 0.5:
						tile.Key = "^" // 
					}
					chunkMap[Coordinate{X: tile.X, Y: tile.Y}] = tile

				}
			}
		}
		//  X 
	case chunkXMax < 0:
		{
			for x := chunkXMax + CHUNK_SIZE; x > chunkXMax; x -= TILE_SIZE {
				for y := chunkYMax - CHUNK_SIZE; y < chunkYMax; y += TILE_SIZE {
					posX := float32(x - (TILE_SIZE / 2))
					posY := float32(y + (TILE_SIZE / 2))

					tile := Tile{}

					tile.X = int(posX)
					tile.Y = int(posY)

					perlinValue := PerlinNoise.Noise(posX/PERLIN_SEED, posY/PERLIN_SEED)
					switch {
					case perlinValue < -0.12:
						tile.Key = "~"
					case perlinValue >= -0.12 && perlinValue <= 0.5:
						tile.Key = "1"

					case perlinValue > 0.5:
						tile.Key = "^"
					}

					chunkMap[Coordinate{X: tile.X, Y: tile.Y}] = tile

				}
			}
		}
		//  Y 
	case chunkYMax < 0:
		{
			for x := chunkXMax - CHUNK_SIZE; x < chunkXMax; x += TILE_SIZE {
				for y := chunkYMax + CHUNK_SIZE; y > chunkYMax; y -= TILE_SIZE {
					posX := float32(x + (TILE_SIZE / 2))
					posY := float32(y - (TILE_SIZE / 2))
					tile := Tile{}
					tile.X = int(posX)
					tile.Y = int(posY)
					perlinValue := PerlinNoise.Noise(posX/PERLIN_SEED, posY/PERLIN_SEED)
					switch {
					case perlinValue < -0.12:
						tile.Key = "~"
					case perlinValue >= -0.12 && perlinValue <= 0.5:
						tile.Key = "1"
					case perlinValue > 0.5:
						tile.Key = "^"
					}
					chunkMap[Coordinate{X: tile.X, Y: tile.Y}] = tile

				}
			}
		}
		//   
	default:
		{
			for x := chunkXMax - CHUNK_SIZE; x < chunkXMax; x += TILE_SIZE {
				for y := chunkYMax - CHUNK_SIZE; y < chunkYMax; y += TILE_SIZE {
					posX := float32(x + (TILE_SIZE / 2))
					posY := float32(y + (TILE_SIZE / 2))
					tile := Tile{}
					tile.X = int(posX)
					tile.Y = int(posY)
					perlinValue := PerlinNoise.Noise(posX/PERLIN_SEED, posY/PERLIN_SEED)
					switch {
					case perlinValue < -0.12:
						tile.Key = "~"
					case perlinValue >= -0.12 && perlinValue <= 0.5:
						tile.Key = "1"
					case perlinValue > 0.5:
						tile.Key = "^"
					}
					chunkMap[Coordinate{X: tile.X, Y: tile.Y}] = tile

				}
			}
		}

	}

	chunk.Map = chunkMap
	return chunk
}


因此,在此功能或我们块的构造函数中,我们确定了块的最大坐标,我们将按顺序将其移至该最大坐标,并在图块中填充必要的信息。ChunkMax的定义也非常简单,为此,我们将块的ID乘以块的大小(CHUNK_SIZE),即ID为{1; 1},我们的坐标chunkXMax和chunkYMax将为256。

在posX / posY中,我们确定用于插入图形的坐标:

					posX := float32(x + (TILE_SIZE / 2))
					posY := float32(y + (TILE_SIZE / 2))

我们使用switch根据块ID的值来选择逻辑(可能有正值也可能有负值)。磁贴的键将确定perlin的噪音,例如,如果perlin的噪音小于0,则为水,高于0的为土地。我们将这样做:

					case perlinValue < -0.12:
						tile.Key = "~" // 
					case perlinValue >= -0.12 && perlinValue <= 0.5:
						tile.Key = "1" // 
					case perlinValue > 0.5:
						tile.Key = "^" // 

让我们看看我们的函数是如何工作的,用以下内容替换main中的代码:

func main() {
	coord := Chunk.Coordinate{Y: 1, X: 1}
	chunk := Chunk.NewChunk(coord)
	m := chunk.Map
	out := os.Stdout
	for y := 8; y < 16*16; y += 16 {
		for x := 8; x < 16*16; x += 16 {
			c := Chunk.Coordinate{X: x, Y: y}
			out.Write([]byte(m[c].Key))

		}
		out.Write([]byte("\n"))
	}

}

结论:

11~~~11111111111
11~~~11111111111
11~~~~1111111111
11~~~~1111111111
11~~~~~111111111
11~~~~~~1111111~
11~~~~~~~~~11~~~
11~~~~~~~~~~~~~~
11~~~~~~~~~~~~~~
11~~~~~~~~~~~~~~
11~~~~~~~~~~~~~~
11~~~~~~~~~~~~~~
11~~~~~~~~~~~~~~
11~~~~~~~~~~~~~~
11~~~~~~~~~~1111
11~~~~~~~~~11111

看起来不错,您可以更改输出功能并使用以下参数:

11111~~~~~~~~111111111111111111111111111111~~~~~~~11111111111111
11111~~~~~~~~111111111111111111111111111111~~~~~~~11111111111111
11111~~~~~~~~111111111111111111111111111111~~~~~~~11111111111111
11111~~~~~~~~111111111111111111111111111111~~~~~~~~1111111111111
11111~~~~~~~~11111111111111111111111111111~~~~~~~~~1111111111111
11111~~~~~~~~11111111111111111111111111111~~~~~~~~~1111111111111
11111~~~~~~~~~111111111111111111111111111~~~~~~~~~~~111111111111
11111~~~~~~~~~111111111111111111111111111~~~~~~~~~~~~11111111111
11111~~~~~~~~~~1111111111111111111111111~~~~~~~~~~~~~11111111111
11111~~~~~~~~~~~11111111111111111111111~~~~~~~~~~~~~~~1111111111
11111~~~~~~~~~~~1111111111111111111111~~~~~~~~~~~~~~~~~111111111
11111~~~~~~~~~~~~~11111111111111111111~~~~~~~~~~~~~~~~~111111111
11111~~~~~~~~~~~~~~111111111111111111~~~~~~~~~~~~~~~~~~~11111111
11111~~~~~~~~~~~~~~~~11111111111111~~~~~~~~~~~~~~~~~~~~~~1111111
11111~~~~~~~~~~~~~~~~~~11111111111~~~~~~~~~~~~~~~~~~~~~~~~111111
11111~~~~~~~~~~~~~~~~~~~~~111111~~~~~~~~~~~~~~~~~~~~~~~~~~~11111
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1111
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~111
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~11
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~~~~~~1111111111~~~~~~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~~~~111111111111111~~~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~~1111111111111111111~~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~~111111111111111111111~~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~~11111111111111111111111~~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~~1111111111111111111111111~~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~~111111111111111111111111111~~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~11111111111111111111111111111~~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~~111111111111111111111111111111~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~~1111111111111111111111111111111~~~~~~~~~~~
11111~~~~~~~~~~~~~~~~111111111111111111111111111111111~~~~~~~~~~
11111~~~~~~~~~~~~~~~~1111111111111111111111111111111111~~~~~~~~~
11111~~~~~~~~~~~~~~~~11111111111111111111111111111111111~~~~~~~~
11111~~~~~~~~~~~~~~~~11111111111111111111111111111111111~~~~~~~~
11111~~~~~~~~~~~~~~~~111111111111111111111111111111111111~~~~~~~
11111~~~~~~~~~~~~~~~~1111111111111111111111111111111111111~~~~~~
11111~~~~~~~~~~~~~~~~1111111111111111111111111111111111111~~~~~~
11111~~~~~~~~~~~~~~~~11111111111111111111111111111111111111~~~~~
11111~~~~~~~~~~~~~~~~11111111111111111111111111111111111111~~~~~
11111~~~~~~~~~~~~~~~~~11111111111111111111111111111111111111~~~~
11111~~~~~~~~~~~~~~~~~11111111111111111111111111111111111111~~~~
11111~~~~~~~~~~~~~~~~~~11111111111111111111111111111111111111~~~
1111~~~~~~~~~~~~~~~~~~~11111111111111111111111111111111111111~~~
1111~~~~~~~~~~~~~~~~~~~~1111111111111111111111111111111111111~~~
1111~~~~~~~~~~~~~~~~~~~~~111111111111111111111111111111111111~~~
1111~~~~~~~~~~~~~~~~~~~~~1111111111111111111111111111111111111~~
1111~~~~~~~~~~~~~~~~~~~~~~111111111111111111111111111111111111~~
1111~~~~~~~~~~~~~~~~~~~~~~~11111111111111111111111111111111111~~
1111~~~~~~~~~~~~~~~~~~~~~~~~1111111111111111111111111111111111~~
1111~~~~~~~~~~~~~~~~~~~~~~~~1111111111111111111111111111111111~~
1111~~~~~~~~~~~~~~~~~~~~~~~~~111111111111111111111111111111111~~

编码:

package Chunk

import (
	"PerlinNoise"
	"math"
)

var TILE_SIZE = 16
var CHUNK_SIZE = 32 * 32
var PERLIN_SEED float32 = 600

type Coordinate struct {
	X int `json:"x"`
	Y int `json:"y"`
}
type Chunk struct {
	ChunkID [2]int
	Map     map[Coordinate]Tile
}
type Tile struct {
	Key string
	X   int
	Y   int
}

func GetChunkID(x, y int) Coordinate {
	tileX := float64(x)
	tileY := float64(y)

	var ChunkID Coordinate
	if tileX < 0 {
		ChunkID.X = int(math.Floor(tileX / float64(TILE_SIZE)))
	} else {
		ChunkID.X = int(math.Ceil(tileX / float64(TILE_SIZE)))
	}
	if tileY < 0 {
		ChunkID.Y = int(math.Floor(tileY / float64(TILE_SIZE)))
	} else {
		ChunkID.Y = int(math.Ceil(tileY / float64(TILE_SIZE)))
	}
	if tileX == 0 {
		ChunkID.X = 1
	}
	if tileY == 0 {
		ChunkID.Y = 1
	}
	return ChunkID

}
func NewChunk(idChunk Coordinate) Chunk {
	//    
	chunk := Chunk{ChunkID: [2]int{idChunk.X, idChunk.Y}}
	//   
	var chunkXMax, chunkYMax int
	//    
	var chunkMap map[Coordinate]Tile
	chunkMap = make(map[Coordinate]Tile)
	//     
	chunkXMax = idChunk.X * CHUNK_SIZE
	chunkYMax = idChunk.Y * CHUNK_SIZE
	switch {
	//      
	case chunkXMax < 0 && chunkYMax < 0:
		{
			for x := chunkXMax + CHUNK_SIZE; x > chunkXMax; x -= TILE_SIZE {
				for y := chunkYMax + CHUNK_SIZE; y > chunkYMax; y -= TILE_SIZE {
					//     
					posX := float32(x - (TILE_SIZE / 2))
					posY := float32(y + (TILE_SIZE / 2))
					tile := Tile{}

					tile.X = int(posX)
					tile.Y = int(posY)

					perlinValue := PerlinNoise.Noise(posX/PERLIN_SEED, posY/PERLIN_SEED)
					switch {
					case perlinValue < -0.01:
						tile.Key = "~" //
					case perlinValue >= -0.01 && perlinValue <= 0.5:
						tile.Key = "1" //

					case perlinValue > 0.5:
						tile.Key = "^" // 
					}
					chunkMap[Coordinate{X: tile.X, Y: tile.Y}] = tile

				}
			}
		}
		//  X 
	case chunkXMax < 0:
		{
			for x := chunkXMax + CHUNK_SIZE; x > chunkXMax; x -= TILE_SIZE {
				for y := chunkYMax - CHUNK_SIZE; y < chunkYMax; y += TILE_SIZE {
					posX := float32(x - (TILE_SIZE / 2))
					posY := float32(y + (TILE_SIZE / 2))

					tile := Tile{}

					tile.X = int(posX)
					tile.Y = int(posY)

					perlinValue := PerlinNoise.Noise(posX/PERLIN_SEED, posY/PERLIN_SEED)
					switch {
					case perlinValue < -0.12:
						tile.Key = "~"
					case perlinValue >= -0.12 && perlinValue <= 0.5:
						tile.Key = "1"

					case perlinValue > 0.5:
						tile.Key = "^"
					}

					chunkMap[Coordinate{X: tile.X, Y: tile.Y}] = tile

				}
			}
		}
		//  Y 
	case chunkYMax < 0:
		{
			for x := chunkXMax - CHUNK_SIZE; x < chunkXMax; x += TILE_SIZE {
				for y := chunkYMax + CHUNK_SIZE; y > chunkYMax; y -= TILE_SIZE {
					posX := float32(x + (TILE_SIZE / 2))
					posY := float32(y - (TILE_SIZE / 2))
					tile := Tile{}
					tile.X = int(posX)
					tile.Y = int(posY)
					perlinValue := PerlinNoise.Noise(posX/PERLIN_SEED, posY/PERLIN_SEED)
					switch {
					case perlinValue < -0.12:
						tile.Key = "~"
					case perlinValue >= -0.12 && perlinValue <= 0.5:
						tile.Key = "1"
					case perlinValue > 0.5:
						tile.Key = "^"
					}
					chunkMap[Coordinate{X: tile.X, Y: tile.Y}] = tile

				}
			}
		}
		//   
	default:
		{
			for x := chunkXMax - CHUNK_SIZE; x < chunkXMax; x += TILE_SIZE {
				for y := chunkYMax - CHUNK_SIZE; y < chunkYMax; y += TILE_SIZE {
					posX := float32(x + (TILE_SIZE / 2))
					posY := float32(y + (TILE_SIZE / 2))
					tile := Tile{}
					tile.X = int(posX)
					tile.Y = int(posY)
					perlinValue := PerlinNoise.Noise(posX/PERLIN_SEED, posY/PERLIN_SEED)
					switch {
					case perlinValue < -0.12:
						tile.Key = "~"
					case perlinValue >= -0.12 && perlinValue <= 0.5:
						tile.Key = "1"
					case perlinValue > 0.5:
						tile.Key = "^"
					}
					chunkMap[Coordinate{X: tile.X, Y: tile.Y}] = tile

				}
			}
		}

	}

	chunk.Map = chunkMap
	return chunk
}


Perlin.go
package PerlinNoise

import (
	"math"
	"math/rand"
)

func Noise(x, y float32) float32 {
	//Coordinate left and top vertex square
	left := float32(math.Floor(float64(x)))
	top := float32(math.Floor(float64(y)))

	//Local coordinate
	localPoinX := x - left
	localPoiny := y - top

	topLeft := getRandomVector(left, top)
	topRight := getRandomVector(left+1, top)
	bottomLeft := getRandomVector(left, top+1)
	bottomRight := getRandomVector(left+1, top+1)
	//      
	DtopLeft := []float32{localPoinX, localPoiny}
	DtopRight := []float32{localPoinX - 1, localPoiny}
	DbottomLeft := []float32{localPoinX, localPoiny - 1}
	DbottomRight := []float32{localPoinX - 1, localPoiny - 1}

	// 
	tx1 := dot(DtopLeft, topLeft)
	tx2 := dot(DtopRight, topRight)
	bx1 := dot(DbottomLeft, bottomLeft)
	bx2 := dot(DbottomRight, bottomRight)

	//  
	pointX := curve(localPoinX)
	pointY := curve(localPoiny)

	//

	tx := lerp(tx1, tx2, pointX)
	bx := lerp(bx1, bx2, pointX)
	tb := lerp(tx, bx, pointY)
	return tb

}
func getRandomVector(x, y float32) []float32 {
	rand.Seed(int64(x * y))
	v := rand.Intn(3)

	switch v {

	case 0:
		return []float32{-1, 0}
	case 1:
		return []float32{1, 0}
	case 2:
		return []float32{0, 1}
	default:
		return []float32{0, -1}

	}
}
func dot(a []float32, b []float32) float32 {

	return (a[0]*b[0] + b[1]*a[1])
}
func lerp(a, b, c float32) float32 {

	return a*(1-c) + b*c

}
func curve(t float32) float32 {

	return (t * t * t * (t*(t*6-15) + 10))

}


main.go
package main

import (
	"fmt"
	"habr/Chunk"
	"os"
)

func main() {
	coord:= Chunk.GetChunkID(0,0)
	fmt.Println(coord)
	chunk := Chunk.NewChunk(coord)
	m := chunk.Map
	out := os.Stdout
	for y := 8; y < 32*32; y += 16 {
		for x := 8; x < 32*32; x += 16 {
			c := Chunk.Coordinate{X: x, Y: y}
			out.Write([]byte(m[c].Key))

		}
		out.Write([]byte("\n"))
	}

}


在下一篇文章中,我们将考虑使用HTTP,如果影响HTTP,则将使用WS连接。让我们创建一种游戏卡,将其以json格式序列化以在客户端上呈现,并大致了解我们如何与客户端交互。

All Articles