嵌入程序员的简短说明:微控制器内存中的节重复

初始状态


有一个基于微控制器的设备(例如,将采用stm32f405rgt6)。启用后,它将根据用户首选项或默认设置调整外围设备。用户可以通过一种可能的界面(CLI菜单或用于设置通过二进制协议工作的工作参数的实用程序)在设备运行期间更改设置(通常,仅在集成到组合系统时)。设置完参数后,用户可以使用特殊命令(也可以通过可能的接口之一)保存设置。

任务


  • 为了减少运行期间访问设备设置变量所需的时间,您需要将当前值保留在RAM中(通常,这些数据的数量从十几个变量到3 KB不等,具体取决于设备)。
  • 必须将用户设置一式两份存储在微控制器的闪存中。
  • 用户设置的每个实例都必须在有效负载之后立即以CRC32结尾。
  • 对于每个用户设置实例,闪存中都会使用一个单独的页面(即使有用数据为2 kb,并且这些页面除以128 kb,然后整个页面都在一个块内给出)
  • 微控制器软件代码必须存储默认设置,如果两者均已损坏,则默认设置应为用户设置块

尝试解决


GCC(在撰写本文时)没有标记来获取该节的副本。用“魔术线”补充LD脚本也失败。可以使用objcopy进行工作,但是这种方法非常隐式,并导致细微的错误。

决断


解决方案是在用户代码中创建所需实体(变量,结构,数组等)的隐式副本,然后在内存中创建它们的位置。

创建用于隐藏结构复制的宏


让我们创建一个宏,通过该宏我们将为RAM中的结构,在单独页面上以及用户代码中(用于初始值)的2个Flash存储器实例保留一个位置。

#define USER_CFG_DATA_STRUCT(TYPE,NAME,...) \
    __attribute__((aligned(4), section (".user_cfg_data_ram_page"))) \
    TYPE NAME = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_default_page"))) \
    TYPE flash_default_page_##NAME = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_1"))) \
    TYPE flash_page_1_##NAME = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_2"))) \
    TYPE flash_page_2_##NAME = __VA_ARGS__;

使用宏,将创建具有不同名称的4个结构实例。在项目代码中(用于用户设置存储页面的系统除外),所有模块必须使用不带前缀的结构(宏中指定的名称),该结构将位于RAM中(可以更改负责用户交互的模块,其余的仅应从中读取)。

在用户代码中使用宏的示例:

typedef struct _test_st {
    uint32_t a1;
    uint32_t a2;
} test_st_t;

USER_CFG_DATA_STRUCT(test_st_t, name_st, {
    .a1 = 1,
    .a2 = 2
})

从项目代码中可获得结构实例name_st之后。

创建宏以隐藏其他实体


要创建变量,您只需要执行宏替换即可创建结构。
对于数组,添加元素数。

#define USER_CFG_DATA_VAR USER_CFG_DATA_STRCUT
#define USER_CFG_DATA_ARRAY(TYPE,NAME,SIZE,...) \
    __attribute__((aligned(4), section (".user_cfg_data_ram_page"))) \
    TYPE NAME[SIZE] = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_default_page"))) \
    TYPE flash_default_page_##NAME[SIZE] = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_1"))) \
    TYPE flash_page_1_##NAME[SIZE] = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_2"))) \
    TYPE flash_page_2_##NAME[SIZE] = __VA_ARGS__;

使用原理类似于使用结构。

LD脚本完成


创建实体副本时,会指出它们位于哪些部分。现在,您应该在LD脚本中创建这些部分。对于F4,来自ST的增强LD脚本将如下所示:

LD脚本
MEMORY
{
    FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 1024K - 256K /* 256   user_cfg */
   USER_CFG_PAGE_1 (rx) : ORIGIN = 0x080C0000, LENGTH = 128K - 4     /* 4  CRC32 */
    USER_CFG_PAGE_2 (rx) : ORIGIN = 0x080E0000, LENGTH = 128K - 4     /* 4  CRC32 */
    CCM (xrw) : ORIGIN = 0x10000000, LENGTH = 64K
    RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
}

/*       CRC32.
       .      - . */
user_cfg_data_flash_page_1_size = LENGTH(user_cfg_PAGE_1) + 4;
user_cfg_data_flash_page_2_size = LENGTH(user_cfg_PAGE_2) + 4;
user_cfg_data_flash_page_size = user_cfg_data_flash_page_1_size;

/*
 * The '__stack' definition is required by crt0, do not remove it.
 */
__stack = ORIGIN(RAM) + LENGTH(RAM);

_estack = __stack;     /* STM specific definition */

/*
 * Default stack sizes.
 * These are used by the startup in order to allocate stacks
 * for the different modes.
 */

__Main_Stack_Size = 1024 ;

PROVIDE ( _Main_Stack_Size = __Main_Stack_Size ) ;

__Main_Stack_Limit = __stack  - __Main_Stack_Size ;

/*"PROVIDE" allows to easily override these values from an object file or the command line. */
PROVIDE ( _Main_Stack_Limit = __Main_Stack_Limit ) ;

/*
 * There will be a link error if there is not this amount of
 * RAM free at the end.
 */
_Minimum_Stack_Size = 512 ;

/*
 * Default heap definitions.
 * The heap start immediately after the last statically allocated
 * .sbss/.noinit section, and extends up to the main stack limit.
 */
PROVIDE ( _Heap_Begin = _end_noinit ) ;
PROVIDE ( _Heap_Limit = __stack - __Main_Stack_Size ) ;

SECTIONS
{
    .isr_vector :
    {
        KEEP(*(.isr_vector))         /* Interrupt vectors */
        KEEP(*(.cfmconfig))            /* Freescale configuration words */
        *(.after_vectors .after_vectors.*)    /* Startup code and ISR */
        . = ALIGN(4);
    } >FLASH

    .inits :
    {
        . = ALIGN(4);

        /*
         * These are the old initialisation sections, intended to contain
         * naked code, with the prologue/epilogue added by crti.o/crtn.o
         * when linking with startup files. The standalone startup code
         * currently does not run these, better use the init arrays below.
         */
        KEEP(*(.init))
        KEEP(*(.fini))

        . = ALIGN(4);

        /*
         * The preinit code, i.e. an array of pointers to initialisation
         * functions to be performed before constructors.
         */
        PROVIDE_HIDDEN (__preinit_array_start = .);

        /*
         * Used to run the SystemInit() before anything else.
         */
        KEEP(*(.preinit_array_sysinit .preinit_array_sysinit.*))

        /*
         * Used for other platform inits.
         */
        KEEP(*(.preinit_array_platform .preinit_array_platform.*))

        /*
         * The application inits. If you need to enforce some order in
         * execution, create new sections, as before.
         */
        KEEP(*(.preinit_array .preinit_array.*))

        PROVIDE_HIDDEN (__preinit_array_end = .);

        . = ALIGN(4);

        /*
         * The init code, i.e. an array of pointers to static constructors.
         */
        PROVIDE_HIDDEN (__init_array_start = .);
        KEEP(*(SORT(.init_array.*)))
        KEEP(*(.init_array))
        PROVIDE_HIDDEN (__init_array_end = .);

        . = ALIGN(4);

        /*
         * The fini code, i.e. an array of pointers to static destructors.
         */
        PROVIDE_HIDDEN (__fini_array_start = .);
        KEEP(*(SORT(.fini_array.*)))
        KEEP(*(.fini_array))
        PROVIDE_HIDDEN (__fini_array_end = .);
        . = ALIGN(4);

    } >FLASH

    /*
     * For some STRx devices, the beginning of the startup code
     * is stored in the .flashtext section, which goes to FLASH.
     */
    .flashtext :
    {
        . = ALIGN(4);
        *(.flashtext .flashtext.*)    /* Startup code */
        . = ALIGN(4);
    } >FLASH


    /*
     * The program code is stored in the .text section,
     * which goes to FLASH.
     */
    .text :
    {
        . = ALIGN(4);

        *(.text .text.*)            /* all remaining code */

        *(.rodata .rodata.*)         /* read-only data (constants) */

        *(vtable)                    /* C++ virtual tables */

        KEEP(*(.eh_frame*))

        /*
         * Stub sections generated by the linker, to glue together
         * ARM and Thumb code. .glue_7 is used for ARM code calling
         * Thumb code, and .glue_7t is used for Thumb code calling
         * ARM code. Apparently always generated by the linker, for some
         * architectures, so better leave them here.
         */
        *(.glue_7)
        *(.glue_7t)
    } >FLASH

    .user_cfg_data_flash_default_page :
    {
        . = ALIGN(4);
        user_cfg_data_flash_default_page_start = .;
        KEEP(*(.user_cfg_data_flash_default_page .user_cfg_data_flash_default_page.*))
        . = ALIGN(4);
        user_cfg_data_flash_default_page_stop = .;
    } >FLASH

    /* ARM magic sections */
    .ARM.extab :
       {
       *(.ARM.extab* .gnu.linkonce.armextab.*)
       } > FLASH

       __exidx_start = .;
       .ARM.exidx :
       {
       *(.ARM.exidx* .gnu.linkonce.armexidx.*)
       } > FLASH
       __exidx_end = .;

    . = ALIGN(4);
    _etext = .;
    __etext = .;

    /*
     * This address is used by the startup code to
     * initialise the .data section.
     */
    _sidata = _etext;

    /* MEMORY_ARRAY */
    /*
    .ROarraySection :
    {
         *(.ROarraySection .ROarraySection.*)
    } >MEMORY_ARRAY
    */

    /*
     * The initialised data section.
     * The program executes knowing that the data is in the RAM
     * but the loader puts the initial values in the FLASH (inidata).
     * It is one task of the startup to copy the initial values from
     * FLASH to RAM.
     */
    .data  : AT ( _sidata )
    {
        . = ALIGN(4);

        /* This is used by the startup code to initialise the .data section */
        _sdata = . ;            /* STM specific definition */
        __data_start__ = . ;
        *(.data_begin .data_begin.*)

        *(.data .data.*)

        *(.data_end .data_end.*)

        *(.ramfunc*)
        . = ALIGN(4);

        /* This is used by the startup code to initialise the .data section */
        _edata = . ;            /* STM specific definition */
        __data_end__ = . ;

    } >RAM


    /*
     * The uninitialised data section. NOLOAD is used to avoid
     * the "section `.bss' type changed to PROGBITS" warning
     */
    .bss (NOLOAD) :
    {
        . = ALIGN(4);
        __bss_start__ = .;         /* standard newlib definition */
        _sbss = .;              /* STM specific definition */
        *(.bss_begin .bss_begin.*)

        *(.bss .bss.*)
        *(COMMON)

        *(.bss_end .bss_end.*)
        . = ALIGN(4);
        __bss_end__ = .;        /* standard newlib definition */
        _ebss = . ;             /* STM specific definition */
    } >RAM

    .user_cfg_data_ram_page :
    {
        . = ALIGN(4);
        user_cfg_data_ram_page_start = .;
        KEEP(*(.user_cfg_data_ram_page .user_cfg_data_ram_page.*))
        . = ALIGN(4);
        user_cfg_data_ram_page_stop = .;
    } > CCM

    user_cfg_data_ram_page_size = user_cfg_data_ram_page_stop - user_cfg_data_ram_page_start;

    .user_cfg_data_page_1 :
    {
        . = ALIGN(4);
        user_cfg_data_flash_page_1_start = .;
         KEEP(*(.user_cfg_data_flash_page_1 .user_cfg_data_flash_page_1.*))
        . = ALIGN(4);
        user_cfg_data_flash_page_1_stop = .;
    } > user_cfg_PAGE_1

    .user_cfg_data_page_2 :
    {
        . = ALIGN(4);
        user_cfg_data_flash_page_2_start = .;
         KEEP(*(.user_cfg_data_flash_page_2 .user_cfg_data_flash_page_2.*))
        . = ALIGN(4);
        user_cfg_data_flash_page_2_stop = .;
    } > user_cfg_PAGE_2

    .noinit (NOLOAD) :
    {
        . = ALIGN(4);
        _noinit = .;

        *(.noinit .noinit.*)

         . = ALIGN(4) ;
        _end_noinit = .;
    } > RAM

    /* Mandatory to be word aligned, _sbrk assumes this */
    PROVIDE ( end = _end_noinit ); /* was _ebss */
    PROVIDE ( _end = _end_noinit );
    PROVIDE ( __end = _end_noinit );
    PROVIDE ( __end__ = _end_noinit );

    /*
     * Used for validation only, do not allocate anything here!
     *
     * This is just to check that there is enough RAM left for the Main
     * stack. It should generate an error if it's full.
     */
    ._check_stack :
    {
        . = ALIGN(4);
        . = . + _Minimum_Stack_Size ;
        . = ALIGN(4);
    } >RAM


    /* After that there are only debugging sections. */

    /* This can remove the debugging information from the standard libraries */
    /*
    DISCARD :
    {
     libc.a ( * )
     libm.a ( * )
     libgcc.a ( * )
     }
     */

    /* Stabs debugging sections.  */
    .stab          0 : { *(.stab) }
    .stabstr       0 : { *(.stabstr) }
    .stab.excl     0 : { *(.stab.excl) }
    .stab.exclstr  0 : { *(.stab.exclstr) }
    .stab.index    0 : { *(.stab.index) }
    .stab.indexstr 0 : { *(.stab.indexstr) }
    .comment       0 : { *(.comment) }
    /*
     * DWARF debug sections.
     * Symbols in the DWARF debugging sections are relative to the beginning
     * of the section so we begin them at 0.
     */
    /* DWARF 1 */
    .debug          0 : { *(.debug) }
    .line           0 : { *(.line) }
    /* GNU DWARF 1 extensions */
    .debug_srcinfo  0 : { *(.debug_srcinfo) }
    .debug_sfnames  0 : { *(.debug_sfnames) }
    /* DWARF 1.1 and DWARF 2 */
    .debug_aranges  0 : { *(.debug_aranges) }
    .debug_pubnames 0 : { *(.debug_pubnames) }
    /* DWARF 2 */
    .debug_info     0 : { *(.debug_info .gnu.linkonce.wi.*) }
    .debug_abbrev   0 : { *(.debug_abbrev) }
    .debug_line     0 : { *(.debug_line) }
    .debug_frame    0 : { *(.debug_frame) }
    .debug_str      0 : { *(.debug_str) }
    .debug_loc      0 : { *(.debug_loc) }
    .debug_macinfo  0 : { *(.debug_macinfo) }
    /* SGI/MIPS DWARF 2 extensions */
    .debug_weaknames 0 : { *(.debug_weaknames) }
    .debug_funcnames 0 : { *(.debug_funcnames) }
    .debug_typenames 0 : { *(.debug_typenames) }
    .debug_varnames  0 : { *(.debug_varnames) }
}

在此示例中,配置结构不位于RAM区域中,而是位于CCMRAM中,以提高性能。我还注意到,用户设置数据块是最后2个闪存页面,每个页面均为128 kb。

副本的初始化和控制


内存将由程序员负责。首次使用该区域中的数据之前,需要初始化该区域。在闪存中,将程序加载到微控制器中时,数据将以程序代码中指定的初始值进行预记录。如果用户设置块以CRC32结尾,则会在单独的页面中生成无效的副本(因为不执行CRC32的计算。您的代码可以这样做。也要在首次使用配置参数之前)。

要编写用于配置块的模块,您将需要使用LD脚本中的变量。将需要以下内容:

extern uint32_t user_cfg_data_flash_default_page_start;
extern uint32_t user_cfg_data_flash_page_1_start;
extern uint32_t user_cfg_data_flash_page_2_start;
extern uint32_t user_cfg_data_ram_page_start;

extern uint32_t user_cfg_data_flash_page_size;
extern uint32_t user_cfg_data_ram_page_size;

同样,不要忘记可以将user_cfg_data_flash_page_sizeuser_cfg_data_ram_page_size分配为常规值。但是必须通过&指定user_cfg_data_flash_page_1_start和其他存储地址的变量。

Source: https://habr.com/ru/post/undefined/


All Articles