MĂĄscaras sĂŁo inĂșteis: crĂ­tica cientĂ­fica da polĂ­tica social no KOVID-19

Apresento a tradução do artigo "MĂĄscaras nĂŁo funcionam: uma revisĂŁo da ciĂȘncia relevante para a polĂ­tica social do COVID-19", de Denis Rancourt .


anotação


MĂĄscaras e respiradores sĂŁo inĂșteis.


Ensaios clínicos randomizados extensos e uma metanålise de tais ensaios indicam que måscaras e respiradores não afetam a propagação de infecçÔes respiratórias agudas semelhantes a influenza (IRAs), que se acredita serem transmitidas através de gotículas e partículas de aerossol.


Além disso, as bases físicas e biológicas correspondentes são tais que måscaras e respiradores não devem funcionar, dado o que se sabe sobre infecçÔes respiratórias agudas: a principal via de transmissão são partículas de aerossol (menos de 2,5 micrÎmetros), pequenas demais para serem bloqueadas e a dose infecciosa mínima é menor que uma partícula de aerossol.


Este artigo mascarado ilustra o nĂ­vel em que governos, mĂ­dia e advogados institucionais podem atuar no vĂĄcuo cientĂ­fico, ou escolhendo apenas os dados cientĂ­ficos que atendem a seus interesses. Essa imprudĂȘncia certamente ocorre na verdadeira quarentena global, quando mais de um bilhĂŁo de pessoas participam de um experimento sem precedentes na histĂłria da medicina e da polĂ­tica.


De um tradutor, muito breve e popularmente. Provavelmente todo mundo viu poeira voando no ar. Os vírus são ainda menores, não são impedidos por partiçÔes ou distùncias (exceto por quilÎmetros, mas isso não é preciso - veja abaixo). Estudos e discussÔes sobre os benefícios das måscaras são tão significativos quanto os argumentos sobre a redução da dose de veneno de 10 para 2-3 gramas quando a dose letal é de 1 grama.


Visão Geral das PublicaçÔes Médicas


Muitas publicaçÔes cientĂ­ficas provam que mĂĄscaras cirĂșrgicas e respiradores (por exemplo, tipo N95) nĂŁo reduzem o risco de infecção e doença. Uma revisĂŁo desta literatura pode ser iniciada com os seguintes artigos:


  • Jacobs, J. L. et al. (2009) “Use of surgical face masks to reduce the incidence of the common cold among health care workers in Japan: A randomized controlled trial” (« : »), American Journal of Infection Control, Volume 37, Issue 5, 417-419, https://www.ncbi.nlm.nih.gov/pubmed/19216002: « N95 . ».
  • Cowling, B. et al. (2010) “Face masks to prevent transmission of influenza virus: A systematic review” (« : »), Epidemiology and Infection, 138(4), 449-456, https://doi.org/10.1017/S0950268809991658: « , . . 1 2».
  • bin-Reza et al. (2012) “The use of masks and respirators to prevent transmission of influenza: a systematic review of the scientific evidence” (« : »), Influenza and Other Respiratory Viruses 6(4), 257–267, https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1750-2659.2011.00307.x: « 17 / ».
  • Smith, J. D. et al. (2016) “Effectiveness of N95 respirators versus surgical masks in protecting health care workers from acute respiratory infection: a systematic review and meta-analysis” (« N95 : »), CMAJ Mar 2016, cmaj.150835, https://www.cmaj.ca/content/188/8/567: « 6 N95 : , , ».
  • Offeddu, V. et al. (2017) “Effectiveness of Masks and Respirators Against Respiratory Infections in Healthcare Workers: A Systematic Review and Meta-Analysis” (« »), Clinical Infectious Diseases, Volume 65, Issue 11, 1 December 2017, Pages 1934–1942, https://doi.org/10.1093/cid/cix681: « . ».
  • Radonovich, L.J. et al. (2019) “N95 Respirators vs Medical Masks for Preventing Influenza Among Health Care Personnel: A Randomized Clinical Trial” (« N95 : »), JAMA. 2019; 322(9): 824–833, https://jamanetwork.com/journals/jama/fullarticle/2749214: « 2862 , 2371 5180 - (). N95 ».
  • Long, Y. et al. (2020) “Effectiveness of N95 respirators versus surgical masks against influenza: A systematic review and meta‐analysis” (« N95 : »), J Evid Based Med. 2020, 1-9, https://doi.org/10.1111/jebm.12381: « 9171 . N95 , , , . N95 ».


. . .


( ).


, - , , .


.


« »


, , , , . « ».


-


, , , , , - , .


, , , . . Paules, C. and Subbarao, S. (2017) “Influenza” («»), Lancet, Seminar| Volume 390, ISSUE 10095, P697-708, August 12, 2017, http://dx.doi.org/10.1016/S0140-6736(17)30129-0. , .


Viboud, C. et al. (2010) “Preliminary Estimates of Mortality and Years of Life Lost Associated with the 2009 A/H1N1 Pandemic in the US and Comparison with Past Influenza Seasons” (« 2009 »), PLoS currents vol. 2 RRN1153. 20 Mar. 2010, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843747/. . 122 . :


. ( ) , (: - , - ). . Dowell, S. F. (2001) “Seasonal variation in host susceptibility and cycles of certain infectious diseases” (« »), Emerg Infect Dis. 2001; 7(3): 369–374, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631809/.


Shaman, J. et al. (2010) “Absolute Humidity and the Seasonal Onset of Influenza in the Continental United States” (« »), PLoS Biol 8(2): e1000316, https://doi.org/10.1371/journal.pbio.1000316, .


Lowen, A. C. et al. (2007) “Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature” (« »), PLoS Pathog 3(10): e151, https://doi.org/10.1371/journal.ppat.0030151 , , .


, . Harper G. J. (1961) “Airborne micro-organisms: survival tests with four viruses” (« : »), The Journal of hygiene, 59(4), 479–486, https://doi.org/10.1017/s0022172400039176. , («»), , (« »): « , , , ».


« » , «» . , . «» .


, [Shaman, J. et al. (2010)] «» , «» «» ( ). , , .


, (R0) , ( - , , ).


, , (, ). 1,28 ( 1,19 1,37). . Biggerstaff, M. et al. (2014) “Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature” (« , : »), BMC Infect Dis 14, 480 (2014), https://doi.org/10.1186/1471-2334-14-480.


, [Shaman, J. et al. (2010)] , R0 , (, .   2). , , , , , - .


, ( ), R0, . . Coburn, B. J. et al. (2009) “Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)” (« : »), BMC Med 7, 30, https://doi.org/10.1186/1741-7015-7-30 Tracht, S. M. et al. (2010) “Mathematical Modeling of the Effectiveness of Facemasks in Reducing the Spread of Novel Influenza A (H1N1)” (« A(H1N1)»), PLoS ONE 5(2): e9018, https://doi.org/10.1371/journal.pone.0009018.


, « » . , « » - — , .


« » , , , .


: Despres, V. R. et al. (2012) “Primary biological aerosol particles in the atmosphere: a review” (« : »), Tellus B: Chemical and Physical Meteorology, 64:1, 15598, https://doi.org/10.3402/tellusb.v64i0.15598. , : Hammond, G. W. et al. (1989) “Impact of Atmospheric Dispersion and Transport of Viral Aerosols on the Epidemiology of Influenza” (« »), Reviews of Infectious Diseases, Volume 11, Issue 3, May 1989, Pages 494–497, https://doi.org/10.1093/clinids/11.3.494.


, , ( , ) 2,5 . Yang, W. et al. (2011) “Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes” (« , »), Journal of the Royal Society, Interface. 2011 Aug;8(61):1176-1184, https://royalsocietypublishing.org/doi/10.1098/rsif.2010.0686:


« 16 , 5800 37000 . , 64% 2,5 , . 40 280 , , 13±5 , . 12 48 ( ), . , »


( 2,5 ) , ( ). , ( ) . , N95 ( 0,3 0,5 ) , : Balazy et al. (2006) “Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks?” (« N95 95% , ?»), American Journal of Infection Control, Volume 34, Issue 2, March 2006, Pages 51-57, https://doi.org/10.1016/j.ajic.2005.08.018.


, , . , , .


, , .


Yezli, S., Otter, J. A. (2011) “Minimum Infective Dose of the Major Human Respiratory and Enteric Viruses Transmitted Through Food and the Environment” (« »), Food Environ Virol 3, 1–30, https://doi.org/10.1007/s12560-011-9056-7 :


  • , , .
  • , , .
  • 100 1000 .
  •  1  10 .

, :


  • «-» Haas, C. N. et al. (1993) “Risk Assessment of Virus in Drinking Water” (« »), Risk Analysis, 13: 545-552, https://doi.org/10.1111/j.1539-6924.1993.tb00013.x.
  • Zwart, M. P. et al. (2009) “An experimental test of the independent action hypothesis in virus-insect pathosystems” (« - »), Proc. R. Soc. B. 2762233–2242, http://doi.org/10.1098/rspb.2009.0064 , .
  • Baccam, P. et al. (2006) “Kinetics of Influenza A Virus Infection in Humans” (« »), Journal of Virology Jul 2006, 80 (15) 7590-7599, https://jvi.asm.org/content/80/15/7590 , : 6 5 ; 11 ; 3 ; 22 ( R0 22).
  • Brooke, C. B. et al. (2013) “Most Influenza A Virions Fail To Express at Least One Essential Viral Protein” (« »), Journal of Virology, Feb 2013, 87 (6), 3155-3162, https://jvi.asm.org/content/87/6/3155 , , , 90% .

, - ( - , ), . . , .


, , , , . :


  • Leung, N. H. L. et al. (2020) “Respiratory virus shedding in exhaled breath and efficacy of face masks” (« »), Nature Medicine (2020), https://doi.org/10.1038/s41591-020-0843-2.
  • Davies, A. et al. (2013) “Testing the Efficacy of Homemade Masks: Would They Protect in an Influenza Pandemic?” (« : ?»), Disaster Medicine and Public Health Preparedness, http://journals.cambridge.org/abstract_S1935789313000438.
  • Lai, A. C. K. et al. (2012) “Effectiveness of facemasks to reduce exposure hazards for airborne infections among general populations” (« »), J. R. Soc. Interface, 9938–948, http://doi.org/10.1098/rsif.2011.0537.
  • Sande, van der, M. et al. (2008) “Professional and Home-Made Face Masks Reduce Exposure to Respiratory Infections among the General Population” (« »), PLoS ONE 3(7): e2618, https://doi.org/10.1371/journal.pone.0002618.


, , , . , :


  • , . , .
  • .
  • () . . Wada, K. et al. (2012) “Wearing face masks in public during the influenza season may reflect other positive hygiene practices in Japan” (« »), BMC Public Health 12, 1065 (2012), https://doi.org/10.1186/1471-2458-12-1065.
  • - .
  • , .
  • .
  • (, ) , , .
  • , , .
  • ( ), , . .


:


  • ?
  • , ?
  • , , ? , ?
  • ?
  • ?
  • - (, )?
  • ?
  • , , ?
  • ?
  • , ?


, « ».


, . , .


, , , , , .


, ?


, ,     , , . , ,   ,     .


All Articles