Instale a versão GPL do HPL com o OpenBLAS

Para entrar na lista dos complexos TOP 50, 100, 500 HPC (High Performance Computing), os resultados dos testes obtidos com o benchmark HPL (High Performance Linpack) são adequados.

O benchmark Linpack (Linear Algebra PACKage) implementa um algoritmo para resolver SLAEs usando o método de decomposição da LU. Este pacote está disponível ao público, fácil de instalar e executar. Bom para demonstrar o desempenho da CPU.

Todos os que estão familiarizados com a arquitetura dos aceleradores gráficos podem assumir que este pacote é ainda melhor para testar dispositivos de computação com arquitetura GPU. No entanto, a versão 2011 da arquitetura CUDA for Fermi está disponível para download online.

Neste guia, darei um exemplo de criação e execução de HPL para a GPU.

Como controlar o acesso ao software?
Como instalar o CUDA?
Como instalar o openmpi?
Como instalar o openblas?
Como instalar o HPL para GPU?


Instalando o pacote MODULES


Para gerenciar variáveis ​​de ambiente, instale o pacote MODULES e prepare um arquivo de módulo de teste.

$ yum install environment-modules
$ mcedit /etc/modulefailes/test/v1.0
  #%Module1.0
  proc ModulesHelp { } {
    global version
      puts stderr "Modulefile for test v1.0"
      }
      set version v1.0
      module-whatis "Modulefile for test v1.0"
      # Our environment
      setenv MAINDIR /nfs/software/test/v1.0
      prepend-path PATH $env(MAINDIR)/bin
      prepend-path C_INCLUDE_PATH $env(MAINDIR)/include
      prepend-path CPLUS_INCLUDE_PATH $env(MAINDIR)/include
      prepend-path LIBRARY_PATH $env(MAINDIR)/lib64
      prepend-path LD_LIBRARY_PATH $env(MAINDIR)/lib64

Verifique os arquivos do módulo


A probabilidade de cometer um erro ao preparar o módulo é bastante alta. Portanto, verifico todos os caminhos especificados no arquivo do módulo. Para não verificar cada caminho manualmente, preparei um script. Se 0, o caminho está correto.

$ cat check-modulefiles
  #!/bin/sh
  ModulePath=$1
  MainDir=$(cat $ModulePath | grep "setenv MAINDIR" | cut -f7 -d " ")
  ListOfPaths=$(cat $ModulePath | grep path | cut -f7 -d " ")
  #Replace MainDir setenv in modulefile
  ListOfPaths=$(echo $ListOfPaths | sed "s@\$env(MAINDIR)@$MainDir@g")
  for u in $ListOfPaths; do
    ls -la $u 1> /dev/null 2> /dev/null;
    printf "%60s %4d\n" $u $?;
  done
$ chmod +x check-modulefiles
$ ./check-modulefiles /etc/modulefiles/test/v1.0
  /nfs/software/test/v1.0/bin            0
  /nfs/software/test/v1.0/include        0
  /nfs/software/test/v1.0/include        0
  /nfs/software/test/v1.0/lib64          0
  /nfs/software/test/v1.0/lib64          0

Comandos de gerenciamento de módulo


$ module avail
$ module add cuda/v10.1
$ nvcc –version
  Cuda compilation tools, release 10.1, V10.1.168
$ module switch cuda/v10.1 cuda/v9.2
$ nvcc –version
  Cuda compilation tools, release 9.2, V9.2.88
$ module list
$ module rm cuda/v9.2


1. Vamos ver a lista de módulos disponíveis para conexão
2. Conecte o módulo
3-4. Verifique a versão
5. Altere o módulo
6-7. Vamos
verificar a versão 8. Vamos ver a lista de módulos conectados
9. Remova o módulo da lista de módulos conectados

Instalar CUDA


Faça o download do CUDA 9.2 para Centos 7 aqui .

$ chmod +x cuda_9.2.run
$ ./cuda_9.2.run
  Do you accept the previously read EULA? accept
  Install the CUDA 9.2 Toolkit? yes
  Enter Toolkit Location: /nfs/software/cuda/v9.2
  Do you want to install a symbolic link at /usr/local/cuda? no
  Install the CUDA 9.2 Samples? no
$ cat /etc/modulefiles/cuda/v9.2
  #%Module1.0
  proc ModulesHelp { } {
    global version
      puts stderr "Modulefile for cuda v9.2"
      }
      set version v9.2
      module-whatis "Modulefile for cuda v9.2"
      # Our environment
      setenv MAINDIR /nfs/software/cuda/v9.2
      prepend-path PATH $env(MAINDIR)/bin
      prepend-path C_INCLUDE_PATH $env(MAINDIR)/include
      prepend-path CPLUS_INCLUDE_PATH $env(MAINDIR)/include
      prepend-path LIBRARY_PATH $env(MAINDIR)/lib64/stubs
      prepend-path LIBRARY_PATH $env(MAINDIR)/lib64
      prepend-path LD_LIBRARY_PATH $env(MAINDIR)/lib64/stubs
      prepend-path LD_LIBRARY_PATH $env(MAINDIR)/lib64
  $ module add cuda/v9.2
  $ nvcc --version
  Cuda compilation tools, release 9.2, V9.2.148

Instale o OpenBLAS


$ wget https://github.com/xianyi/OpenBLAS/archive/v0.3.6.tar.gz
$ tar -xzvf v0.3.6.tar.gz
$ cd OpenBLAS-0.3.6
$ mkdir -p /nfs/software/openblas/v0.3.6
$ make -j4
$ make PREFIX=/nfs/software/openblas/v0.3.6/ install
$ ls -la /nfs/software/openblas/v0.3.6/lib/
$ cat /etc/modulefiles/openblas/v0.3.6
  #%Module1.0
  proc ModulesHelp { } {
    global version
      puts stderr "Modulefile for openblas v0.3.6"
      }
      set version v0.3.6
      module-whatis "Modulefile for openblas v0.3.6"
      # Our environment
      setenv MAINDIR /nfs/software/openblas/v0.3.6
      prepend-path PATH $env(MAINDIR)/bin
      prepend-path C_INCLUDE_PATH $env(MAINDIR)/include
      prepend-path CPLUS_INCLUDE_PATH $env(MAINDIR)/include
      prepend-path LIBRARY_PATH $env(MAINDIR)/lib
      prepend-path LD_LIBRARY_PATH $env(MAINDIR)/lib
$ ls -la /nfs/software/openblas/v0.3.6/lib

Instale o OpenMPI


wget https://download.open-mpi.org/release/open-mpi/v2.1/openmpi-2.1.6.tar.gz
$ tar -xzvf openmpi-2.1.6.tar.gz
$ cd openmpi-2.1.6
$ mkdir -p /nfs/software/openmpi/v2.1.6
$ module add cuda/v9.2
$ ./configure --prefix=/nfs/software/openmpi/v2.1.6/ --with-cuda --enable-static
$ make
$ make install
$ cat /etc/modulefiles/openmpi/v2.1.6
#%Module1.0
proc ModulesHelp { } {
  global version
    puts stderr "Modulefile for openmpi v2.1.6"
    }
    set version v2.1.6
    module-whatis "Modulefile for openmpi v2.1.6"
    # Our environment
    setenv MAINDIR /nfs/software/openmpi/v2.1.6
    prepend-path PATH $env(MAINDIR)/bin
    prepend-path C_INCLUDE_PATH $env(MAINDIR)/include
    prepend-path CPLUS_INCLUDE_PATH $env(MAINDIR)/include
    prepend-path LIBRARY_PATH $env(MAINDIR)/lib
    prepend-path LD_LIBRARY_PATH $env(MAINDIR)/lib
$ module add openmpi/v2.1.6
$ mpirun --version
mpirun (Open MPI) 2.1.6

Instale o HPL para GPU


Configure as variáveis ​​de ambiente conectando os módulos e faça o download do HPL 2.0.

$ module add openmpi/v2.1.6
$ module add cuda/v9.2
$ module add openblas/v0.3.6
$ wget https://developer.download.nvidia.com/assets/cuda/secure/AcceleratedLinpack/hpl-2.0_FERMI_v15.tgz
$ tar -xvf hpl-2.0_FERMI_v15.tgz
$ mv hpl-2.0_FERMI_v15.tgz hpl-2.0
$ cd hpl-2.0

Antes da montagem, você deve editar vários arquivos. O primeiro é Make.CUDA no diretório hpl-2.0. Copie o seguinte código no Make.CUDA:

$ cat Make.CUDA
  SHELL        = /bin/sh
  CD           = cd
  CP           = cp
  LN_S         = ln -fs
  MKDIR        = mkdir -p
  RM           = /bin/rm -f
  TOUCH        = touch
  ARCH         = CUDA
  
  TOPdir       = /home/user/hpl-2.0
  INCdir       = $(TOPdir)/include
  BINdir       = $(TOPdir)/bin/$(ARCH)
  LIBdir       = $(TOPdir)/lib/$(ARCH)
  HPLlib       = $(LIBdir)/libhpl.a
  
  MPdir        = /nfs/software/openmpi/v2.1.6
  MPinc        = -I$(MPdir)/include
  MPlib        = -L$(MPdir)/lib -lmpi
  
  LAdir        = /nfs/software/openblas/v0.3.6
  LAinc        = -I$(LAdir)/include
  LAlib        = -L$(TOPdir)/src/cuda -ldgemm -L/nfs/software/cuda/v9.2/lib64 -lcuda -lcudart -lcublas -L$(LAdir)/lib -lopenblas
  F2CDEFS      = -DAdd__ -DF77_INTEGER=int -DStringSunStyle
  HPL_INCLUDES = -I$(INCdir) -I$(INCdir)/$(ARCH) $(LAinc) $(MPinc)
  HPL_LIBS     = $(HPLlib) $(LAlib) $(MPlib)
  HPL_OPTS     =  -DCUDA
  HPL_DEFS     = $(F2CDEFS) $(HPL_OPTS) $(HPL_INCLUDES)
  CC           = mpicc
  CCFLAGS      = -fopenmp -lpthread -fomit-frame-pointer -O3 -funroll-loops $(HPL_DEFS)
  CCNOOPT      = $(HPL_DEFS) -O0 -w
  LINKER       = $(CC)
  LINKFLAGS    = $(CCFLAGS)
  ARCHIVER     = ar
  ARFLAGS      = r
  RANLIB       = echo
  MAKE         = make TOPdir=$(TOPdir)

11. Caminho para o diretório hpl-2.0
17. Caminho para OpenMPI
21. Caminho para OpenBLAS
23. Caminho para CUDA lib64

Substitua as seguintes linhas no arquivo hpl-2.0 / src / cuda / cuda_dgemm.c:

$ mcedit src/cuda/cuda_dgemm.c
  // handle2 = dlopen ("libmkl_intel_lp64.so", RTLD_LAZY);
  handle2 = dlopen ("libopenblas.so", RTLD_LAZY);
  // dgemm_mkl = (void(*)())dlsym(handle, "dgemm");
  dgemm_mkl = (void(*)())dlsym(handle, "dgemm_");
  // handle = dlopen ("libmkl_intel_lp64.so", RTLD_LAZY);
  handle = dlopen ("libopenblas.so", RTLD_LAZY);
  // mkl_dtrsm = (void(*)())dlsym(handle2, "dtrsm");
  mkl_dtrsm = (void(*)())dlsym(handle2, "dtrsm_");

Crie e execute o HPL em uma GPU 4x:

$ make arch=CUDA
$ cd bin/CUDA
$ export LD_LIBRARY_PATH=/home/user/hpl-2.0/src/cuda/:$LD_LIBRARY_PATH
$ mpirun -np 4 ./xhpl
  ================================================================================
  HPLinpack 2.0  --  High-Performance Linpack benchmark  --   September 10, 2008
  Written by A. Petitet and R. Clint Whaley,  Innovative Computing Laboratory, UTK
  Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
  Modified by Julien Langou, University of Colorado Denver
  ================================================================================

  An explanation of the input/output parameters follows:
  T/V    : Wall time / encoded variant.
  N      : The order of the coefficient matrix A.
  NB     : The partitioning blocking factor.
  P      : The number of process rows.
  Q      : The number of process columns.
  Time   : Time in seconds to solve the linear system.
  Gflops : Rate of execution for solving the linear system.

  The following parameter values will be used:

  N      :   25000
  NB     :     768
  PMAP   : Row-major process mapping
  P      :       2
  Q      :       2
  PFACT  :    Left
  NBMIN  :       2
  NDIV   :       2
  RFACT  :    Left
  BCAST  :   1ring
  DEPTH  :       1
  SWAP   : Spread-roll (long)
  L1     : no-transposed form
  U      : no-transposed form
  EQUIL  : yes
  ALIGN  : 8 double precision words

  --------------------------------------------------------------------------------

  - The matrix A is randomly generated for each test.
  - The following scaled residual check will be computed:
        ||Ax-b||_oo / ( eps * ( || x ||_oo * || A ||_oo + || b ||_oo ) * N )
  - The relative machine precision (eps) is taken to be               1.110223e-16
  - Computational tests pass if scaled residuals are less than                16.0

  ================================================================================
  T/V                N    NB     P     Q               Time                 Gflops
  --------------------------------------------------------------------------------
  WR10L2L2       25000   768     2     2              16.72              6.232e+02
  --------------------------------------------------------------------------------
  ||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)=        0.0019019 ...... PASSED
  ================================================================================

  Finished      1 tests with the following results:
                1 tests completed and passed residual checks,
                0 tests completed and failed residual checks,
                0 tests skipped because of illegal input values.
  --------------------------------------------------------------------------------

  End of Tests.
  ================================================================================

Para editar os parâmetros de teste, use o arquivo hpl-2.0 / bin / CUDA / HPL.dat

All Articles