Sensor sem fio para abrir e fechar com funcionalidade avançada

Congratulo-me com todos os leitores da Habr e especialmente com a seção "Faça você mesmo ou faça você mesmo"! E se não consigo criar algo assim, sou um arduino, posso ... não toco no tópico principal de gerenciamento de cabines de elevador :). Depois de pensar um pouco, por algum motivo, quis fazer um sensor de abertura e fechamento. Esse sensor, como o resto do meu trabalho que faço recentemente, é baseado em chips da Nordic Semiconductor. O sensor decidiu fazer isso em duas versões, uma no chip nRF52840 e a segunda no chip nRF52811.



Para as versões, foi utilizado o módulo de chip nRF52840 E73_2G4M08S1C , empresa EBYTE , para o módulo de chip verciya nRF52811, MC50SFA, empresa MiNEW . Francamente falando, a busca por chips nRF52811 acessíveis ainda era uma aventura. Porém, como resultado dessa aventura no dispositivo, o módulo no chip nRF52811 da MINEW e os pães na forma de várias versões dos chips soldados a esses módulos são nRF52810 e nRF52832.



A principal funcionalidade do dispositivo é a detecção de abertura e fechamento com base em um interruptor de palheta. O circuito do interruptor reed é re-faseado com anti-ressalto.

Diagrama de circuito:


Esquema do Arduino :)



Pensando sobre o que seria apropriado diluir a principal funcionalidade desse sensor de abertura e fechamento, decidi ver o que há no mercado sobre isso. Como se viu quase nada, o sensor de abertura e fechamento também é na África o sensor de abertura e fechamento. A solução mais "avançada" foi encontrada na REDMOND . No sensor BLE (a propósito, também em um chip da Nordic), além do interruptor reed, há um sensor de temperatura e um botão capacitivo implementado no chip TTP223. Mas, por alguma razão, isso me pareceu não ser uma solução muito boa, quão úteis são as leituras de temperatura próximas à porta ou janela (e o que impedia que fossem medidas pelo chip) e em que situações é apropriado usar o botão no sensor pendurado na janela ou na porta (bem, exceto talvez a entrada :)). Como resultado, decidi expandir as funções de segurança do meu sensor.



O principal critério de seleção foi o consumo de sensores adicionais, uma vez que foi decidido o uso de uma bateria CR2032 neste sensor. Os vencedores entre os candidatos foram dois sensores, o acelerômetro LIS2DW12 e o sensor de campo magnético DRV5032FB.

Atualmente, o LIS2DW12 é provavelmente o acelerômetro mais econômico. No modo de baixo consumo, este acelerômetro consome 1 μA ( folha de dados ). O sensor de campo magnético DRV5032FB também mostrou excelentes características de consumo. Seu consumo é de cerca de 500nA ( folha de dados ).

Decidiu-se que o acelerômetro fosse usado no modo de sensor de choque e o sensor de campo magnético para a finalidade pretendida. Se eu estava calmo sobre a funcionalidade do sensor de choque, o uso de um sensor de campo magnético ainda é uma solução altamente experimental, mas é melhor que um sensor de temperatura.



A parte do software do projeto foi criada para operar o sensor na rede Maysensors. Pelo menos por enquanto. Meisensores na variante de trabalho em chips nórdicos (nRF24 (+ atmega 328, stm32f1), nRF51 e nRF52) no nível mais baixo usam o protocolo proprietário nórdico - ShockBurst aprimorado (ESB), garantindo assim a compatibilidade dos dispositivos nos nRF24 e nRF51-52. Maysensors é um projeto aberto do Arduino em torno do qual uma comunidade bastante grande já se formou em muitos países do mundo. Mas as boas soluções para os chips nRF52 são que não é necessário usar o Maysensors (ESB). Basta substituir o software com base no protocolo Zigbee ou BLE, já que os chips são multiprotocolo ... Quanto ao BLE, vou me aprofundar um pouco, veja o que um maravilhoso Arduino NANO 33 Ble pode ser feito a partir do módulo E73_2G4M08S1C,o custo do meu NANO 33 é de US $ 4.



O esboço do sensor foi feito no Arduino. O IDE de bibliotecas adicionais foi usado na biblioteca do acelerômetro LIS2DW12, um pouco alterado por mim na parte das configurações padrão dos registros, na minha versão ele trabalha imediatamente com as configurações da versão mais baixa do consumo de energia ( disponível no meu git ).

Vou descrever a lógica do programa. No modo principal de operação, o sensor está em um sonho com interrupções externas configuradas, apenas 4 interrupções. Existem duas configurações de interrupções: as configurações reconfiguram interrupções durante a operação do programa, dependendo do estado do comutador reed. Se a porta estiver aberta, as interrupções para o sensor de choque e o sensor de campo magnético são desativadas. Assim que a porta se fecha, as interrupções para dois desses sensores são ativadas. Também descobri o fato de que, durante a abertura, houve situações em que o sensor de choque funcionava antes do interruptor reed, isso vinha de vibrações durante a abertura da fechadura. Esse problema foi registrado apenas com a alta sensibilidade configurada do acelerômetro.

Para eliminar esse problema, uma espera de 2 segundos foi introduzida quando o acelerômetro foi acionado, durante o qual o pino da chave reed é monitorado. Se, durante a espera, ocorrer uma alteração de nível no pino da chave reed, o processamento posterior do evento por interrupção do acelerômetro pára e o processamento do evento a partir da chave reed será iniciado.

O sensor possui um modo de configuração. Quando o botão de serviço é pressionado, o sensor acorda após a interrupção, o módulo de rádio entra no modo de escuta e aguarda os comandos recebidos do controlador UD. Se um comando for recebido, o sensor grava um novo valor na memória e muda para o modo operacional imediatamente entrando em suspensão. Para enviar o próximo comando, a ativação do modo de configuração deve ser repetida. Se, no modo de configuração, o sensor não receber nada dentro de 30 segundos, também passará para o modo de operação após esse período e entrará no modo de suspensão. Além do modo de configuração, a partir do botão de serviço, você pode iniciar a apresentação dos sensores do sensor e redefinir a fábrica (o sensor esquece a rede à qual foi adicionado, o registro do sensor após a redefinição deve ser feito novamente).











Para programar o sensor no Arduino IDE, você precisa adicionar suporte para as seguintes placas:

sandeepmistry / arduino-nRF5
mysensors / ArduinoBoards
Libraries:

Mysensor
LIS2DW12

Programador: st-link, j-link.

Programa de esboço
bool configMode = 0;
int8_t int_status = 0;
bool door_status = 1;
bool check;
bool magnet_status = 1;
bool nosleep = 0;
bool button_flag = 0;
bool onoff = 1;
bool flag_update_transport_param;
bool flag_sendRoute_parent;
bool flag_no_present;
bool flag_nogateway_mode;
bool flag_find_parent_process;
bool flag_fcount;
bool Ack_TL;
bool Ack_FP;
bool PRESENT_ACK;
bool send_a;
bool batt_flag;
byte conf_vibro_set = 2;
byte err_delivery_beat;
byte problem_mode_count;
uint8_t  countbatt = 0;
uint8_t batt_cap;
uint8_t old_batt_cap = 100;
uint32_t BATT_TIME;
uint32_t SLEEP_TIME = 10800000;
uint32_t SLEEP_NOGW = 60000;
uint32_t oldmillis;
uint32_t newmillis;
uint32_t previousMillis;
uint32_t lightMillisR;
uint32_t configMillis;
uint32_t interrupt_time;
uint32_t SLEEP_TIME_W;
uint32_t axel_time;
uint32_t axel_time0;
int16_t myid;
int16_t mypar;
int16_t old_mypar = -1;
bool vibro = 1;
uint32_t PIN_BUTTON_MASK;
uint32_t AXEL_INT_MASK;
uint32_t GERKON_INT_MASK;
uint32_t MAGNET_INT_MASK;
float ODR_1Hz6_LP_ONLY = 1.6f;
float ODR_12Hz5 = 12.5f;
float ODR_25Hz = 25.0f;
float ODR_50Hz = 50.0f;
float ODR_100Hz = 100.0f;
float ODR_200Hz = 200.0f;
volatile byte axelIntStatus = 0;
volatile byte gerkIntStatus = 0;
volatile byte magIntStatus = 0;
volatile byte buttIntStatus = 0;
uint16_t batteryVoltage;
int16_t linkQuality;
int16_t old_linkQuality;

//#define MY_DEBUG
#ifndef MY_DEBUG
#define MY_DISABLED_SERIAL
#endif
#define MY_RADIO_NRF5_ESB
int16_t mtwr;
#define MY_TRANSPORT_WAIT_READY_MS (mtwr)
#define MY_NRF5_ESB_PA_LEVEL (NRF5_PA_MAX)

#include <MySensors.h>

extern "C" {
#include "app_gpiote.h"
#include "nrf_gpio.h"
}
#define APP_GPIOTE_MAX_USERS 1
static app_gpiote_user_id_t m_gpiote_user_id;

#include <LIS2DW12Sensor.h>
LIS2DW12Sensor *lis2;

#define DWS_CHILD_ID 0
#define V_SENS_CHILD_ID 1
#define M_CHILD_ID 2
#define LEVEL_SENSIV_V_SENS_CHILD_ID 230
#define SIGNAL_Q_ID 250

MyMessage dwsMsg(DWS_CHILD_ID, V_TRIPPED);
MyMessage mMsg(M_CHILD_ID, V_TRIPPED);
MyMessage vibroMsg(V_SENS_CHILD_ID, V_TRIPPED);
MyMessage conf_vsensMsg(LEVEL_SENSIV_V_SENS_CHILD_ID, V_VAR1);
#define SN "DOOR & WINDOW SENS"
#define SV "1.12"


void before() {
  board_Init();
  happy_init();
  delay(500);
  batteryVoltage = hwCPUVoltage();
  digitalWrite(BLUE_LED, LOW);
}


void presentation()
{
  NRF_POWER->DCDCEN = 0;
  wait(10);

  check = sendSketchInfo(SN, SV);
  wait(30);
  if (!check) {
    _transportSM.failedUplinkTransmissions = 0;
    wait(30);
    check = sendSketchInfo(SN, SV);
    wait(30);
    _transportSM.failedUplinkTransmissions = 0;
  }
  if (check) {
    blinky(1, 1, BLUE_LED);
  } else {
    blinky(1, 1, RED_LED);
  }

  check = present(DWS_CHILD_ID, S_DOOR, "STATUS RS SENS");
  wait(40);
  if (!check) {
    _transportSM.failedUplinkTransmissions = 0;
    wait(40);
    check = present(DWS_CHILD_ID, S_DOOR, "STATUS RS SENS");
    wait(40);
    _transportSM.failedUplinkTransmissions = 0;
  }
  if (check) {
    blinky(1, 1, BLUE_LED);
  } else {
    blinky(1, 1, RED_LED);
  }

  check = present(V_SENS_CHILD_ID, S_VIBRATION, "STATUS SHOCK SENS");
  wait(50);
  if (!check) {
    _transportSM.failedUplinkTransmissions = 0;
    wait(50);
    check = present(V_SENS_CHILD_ID, S_VIBRATION, "STATUS SHOCK SENS");
    wait(50);
    _transportSM.failedUplinkTransmissions = 0;
  }
  if (check) {
    blinky(1, 1, BLUE_LED);
  } else {
    blinky(1, 1, RED_LED);
  }

  check = present(M_CHILD_ID, S_DOOR, "ANTI-MAGNET ALARM");
  wait(60);
  if (!check) {
    _transportSM.failedUplinkTransmissions = 0;
    wait(60);
    check = present(M_CHILD_ID, S_DOOR, "ANTI-MAGNET ALARM");
    wait(60);
    _transportSM.failedUplinkTransmissions = 0;
  }
  if (check) {
    blinky(1, 1, BLUE_LED);
  } else {
    blinky(1, 1, RED_LED);
  }

  check = present(SIGNAL_Q_ID, S_CUSTOM, "SIGNAL %");
  wait(70);
  if (!check) {
    _transportSM.failedUplinkTransmissions = 0;
    wait(70);
    check = present(SIGNAL_Q_ID, S_CUSTOM, "SIGNAL %");
    wait(70);
    _transportSM.failedUplinkTransmissions = 0;
  }
  if (check) {
    blinky(1, 1, BLUE_LED);
  } else {
    blinky(1, 1, RED_LED);
  }

  check = present(LEVEL_SENSIV_V_SENS_CHILD_ID, S_CUSTOM, "SENS LEVEL VIBRO");
  wait(80);
  if (!check) {
    _transportSM.failedUplinkTransmissions = 0;
    wait(80);
    check = present(LEVEL_SENSIV_V_SENS_CHILD_ID, S_CUSTOM, "SENS LEVEL VIBRO");
    wait(80);
    _transportSM.failedUplinkTransmissions = 0;
  }
  if (check) {
    blinky(1, 1, BLUE_LED);
  } else {
    blinky(1, 1, RED_LED);
  }

  check = send(conf_vsensMsg.set(conf_vibro_set));
  wait(90);
  if (!check) {
    _transportSM.failedUplinkTransmissions = 0;
    wait(90);
    check = send(conf_vsensMsg.set(conf_vibro_set));
    wait(90);
    _transportSM.failedUplinkTransmissions = 0;
  }
  if (check) {
    blinky(1, 1, BLUE_LED);
  } else {
    blinky(1, 1, RED_LED);
  }
  NRF_POWER->DCDCEN = 0;
  wait(10);
}


void setup() {
  digitalWrite(BLUE_LED, HIGH);
  config_Happy_node();
  sensors_Init();
}


void loop() {
  if (flag_update_transport_param == 1) {
    update_Happy_transport();
  }
  if (flag_sendRoute_parent == 1) {
    present_only_parent();
  }
  if (isTransportReady() == true) {
    if (flag_nogateway_mode == 0) {
      if (flag_find_parent_process == 1) {
        find_parent_process();
      }
      if (configMode == 0) {
        if ((axelIntStatus == AXEL_INT) || (buttIntStatus == PIN_BUTTON) || (gerkIntStatus == GERKON_INT) || (magIntStatus == MAGNET_INT)) {
          nosleep = 1;
          newmillis = millis();
          interrupt_time = newmillis - oldmillis;
          BATT_TIME = BATT_TIME - interrupt_time;
          if (BATT_TIME < 60000) {
            BATT_TIME = SLEEP_TIME;
            batteryVoltage = hwCPUVoltage();
            batt_flag = 1;
          }

          if (gerkIntStatus == GERKON_INT) {
            send_Gerkon();
            axel_time = millis();
            nosleep = 0;
          }

          if (magIntStatus == MAGNET_INT) {
            send_Magnet();
            nosleep = 0;
          }

          if (axelIntStatus == AXEL_INT) {
            if (millis() - axel_time0 >= 2000) {
              send_Axel();
              nosleep = 0;
            } else {
              if (digitalRead(GERKON_INT) == LOW) {
                send_Gerkon();
                axel_time = millis();
                nosleep = 0;
              }
            }
          }

          if (buttIntStatus == PIN_BUTTON) {
            if (digitalRead(PIN_BUTTON) == 0 && button_flag == 0) {
              button_flag = 1;
              previousMillis = millis();
              ledsOff();
            }
            if (digitalRead(PIN_BUTTON) == 0 && button_flag == 1) {
              if ((millis() - previousMillis > 0) && (millis() - previousMillis <= 1750)) {
                if (millis() - lightMillisR > 70) {
                  lightMillisR = millis();
                  onoff = !onoff;
                  digitalWrite(BLUE_LED, onoff);
                }
              }
              if ((millis() - previousMillis > 1750) && (millis() - previousMillis <= 2000)) {
                ledsOff();
              }
              if ((millis() - previousMillis > 2000) && (millis() - previousMillis <= 3750)) {
                if (millis() - lightMillisR > 50) {
                  lightMillisR = millis();
                  onoff = !onoff;
                  digitalWrite(GREEN_LED, onoff);
                }
              }
              if ((millis() - previousMillis > 3750) && (millis() - previousMillis <= 4000)) {
                ledsOff();
              }
              if ((millis() - previousMillis > 4000) && (millis() - previousMillis <= 5750)) {
                if (millis() - lightMillisR > 30) {
                  lightMillisR = millis();
                  onoff = !onoff;
                  digitalWrite(RED_LED, onoff);
                }
              }
              if (millis() - previousMillis > 5750) {
                ledsOff();
              }
            }

            if (digitalRead(PIN_BUTTON) == 1 && button_flag == 1) {
              if ((millis() - previousMillis <= 1750) && (button_flag == 1))
              {
                ledsOff();
                blinky(2, 2, BLUE_LED);
                button_flag = 0;
                buttIntStatus = 0;
                presentation();
                nosleep = 0;
              }
              if ((millis() - previousMillis > 2000) && (millis() - previousMillis <= 3750) && (button_flag == 1))
              {
                ledsOff();
                blinky(2, 2, GREEN_LED);
                configMode = 1;
                button_flag = 0;
                configMillis = millis();
                interrupt_Init(1);
                NRF_POWER->DCDCEN = 0;
                buttIntStatus = 0;
                NRF5_ESB_startListening();
                wait(50);
              }

              if ((millis() - previousMillis > 4000) && (millis() - previousMillis <= 5750) && (button_flag == 1))
              {
                ledsOff();
                blinky(3, 3, RED_LED);
                //new_device();
              }

              if ((((millis() - previousMillis > 1750) && (millis() - previousMillis <= 2000)) || ((millis() - previousMillis > 3750) && (millis() - previousMillis <= 4000)) || ((millis() - previousMillis > 5750))) && (button_flag == 1))
              {
                ledsOff();
                nosleep = 0;
                button_flag = 0;
                buttIntStatus = 0;
              }
            }
          }
        } else {
          batteryVoltage = hwCPUVoltage();
          BATT_TIME = SLEEP_TIME;
          sendBatteryStatus(1);
          nosleep = 0;
        }
      } else {
        if (millis() - configMillis > 30000) {
          blinky(3, 3, GREEN_LED);
          configMode = 0;
          nosleep = 0;
          interrupt_Init(0);
          NRF_POWER->DCDCEN = 1;
          wait(50);
        }
      }
    } else {
      if (buttIntStatus == PIN_BUTTON) {
        if (digitalRead(PIN_BUTTON) == 0 && button_flag == 0) {
          button_flag = 1;
          nosleep = 1;
          previousMillis = millis();
          ledsOff();
        }
        if (digitalRead(PIN_BUTTON) == 0 && button_flag == 1) {
          if ((millis() - previousMillis > 0) && (millis() - previousMillis <= 1750)) {
            if (millis() - lightMillisR > 25) {
              lightMillisR = millis();
              onoff = !onoff;
              digitalWrite(GREEN_LED, onoff);
            }
          }
          if ((millis() - previousMillis > 1750) && (millis() - previousMillis <= 2000)) {
            ledsOff();
          }
          if ((millis() - previousMillis > 2000) && (millis() - previousMillis <= 4000)) {
            if (millis() - lightMillisR > 25) {
              lightMillisR = millis();
              onoff = !onoff;
              digitalWrite(RED_LED, onoff);
            }
          }
          if (millis() - previousMillis > 4000) {
            ledsOff();
          }
        }

        if (digitalRead(PIN_BUTTON) == 1 && button_flag == 1) {
          if ((millis() - previousMillis <= 1750) && (button_flag == 1))
          {
            ledsOff();
            blinky(2, 2, BLUE_LED);
            button_flag = 0;
            buttIntStatus = 0;
            check_parent();
            nosleep = 0;
          }
          if ((millis() - previousMillis > 2000) && (millis() - previousMillis <= 4000) && (button_flag == 1))
          {
            ledsOff();
            blinky(3, 3, RED_LED);
            //new_device();
          }

          if ((((millis() - previousMillis > 1750) && (millis() - previousMillis <= 2000)) || ((millis() - previousMillis > 4000))) && (button_flag == 1))
          {
            ledsOff();
            nosleep = 0;
            button_flag = 0;
            buttIntStatus = 0;
          }
        }
      } else {
        check_parent();
      }
    }
  }

  if (_transportSM.failureCounter > 0)
  {
    _transportConfig.parentNodeId = loadState(101);
    _transportConfig.nodeId = myid;
    _transportConfig.distanceGW = loadState(103);
    mypar = _transportConfig.parentNodeId;
    nosleep = 0;
    flag_fcount = 1;
    err_delivery_beat = 6;
    happy_node_mode();
    gateway_fail();
  }

  if (nosleep == 0) {
    oldmillis = millis();
    axelIntStatus = 0;
    buttIntStatus = 0;
    gerkIntStatus = 0;
    magIntStatus = 0;
    sleep(SLEEP_TIME_W, false);
    nosleep = 1;
  }
}


void blinky(uint8_t pulses, uint8_t repit, uint8_t ledColor) {
  for (int x = 0; x < repit; x++) {
    if (x > 0) {
      wait(150);
    }
    for (int i = 0; i < pulses; i++) {
      if (i > 0) {
        wait(40);
      }
      digitalWrite(ledColor, LOW);
      wait(10);
      digitalWrite(ledColor, HIGH);
    }
  }
}


void board_Init() {
  pinMode(PIN_BUTTON, INPUT_PULLUP);
  pinMode(MAGNET_INT, INPUT);
  pinMode(GERKON_INT, INPUT);
  pinMode(AXEL_INT, INPUT);
  pinMode(RED_LED, OUTPUT);
  pinMode(GREEN_LED, OUTPUT);
  pinMode(BLUE_LED, OUTPUT);
  ledsOff();
  NRF_POWER->DCDCEN = 1;
  wait(5);
#ifndef MY_DEBUG
  NRF_UART0->ENABLE = 0;
  wait(5);
#endif
  //NRF_NFCT->TASKS_DISABLE = 1;
  // NRF_NVMC->CONFIG = 1;
  // NRF_UICR->NFCPINS = 0;
  // NRF_NVMC->CONFIG = 0;
  // NRF_SAADC ->ENABLE = 0;
  // NRF_PWM0  ->ENABLE = 0;
  // NRF_PWM1  ->ENABLE = 0;
  // NRF_PWM2  ->ENABLE = 0;
  // NRF_TWIM1 ->ENABLE = 0;
  // NRF_TWIS1 ->ENABLE = 0;
  NRF_RADIO->TXPOWER = 8;
  wait(5);

  conf_vibro_set = loadState(230);
  if ((conf_vibro_set > 5) || (conf_vibro_set == 0)) {
    conf_vibro_set = 2;
    saveState(230, conf_vibro_set);
  }

  blinky(1, 1, BLUE_LED);
}


void ledsOff() {
  digitalWrite(RED_LED, HIGH);
  digitalWrite(GREEN_LED, HIGH);
  digitalWrite(BLUE_LED, HIGH);
}


void happy_init() {
  //hwWriteConfig(EEPROM_NODE_ID_ADDRESS, 255); // ******************** checking the node config reset *************************

  if (hwReadConfig(EEPROM_NODE_ID_ADDRESS) == 0) {
    hwWriteConfig(EEPROM_NODE_ID_ADDRESS, 255);
  }
  if (loadState(100) == 0) {
    saveState(100, 255);
  }
  CORE_DEBUG(PSTR("EEPROM NODE ID: %d\n"), hwReadConfig(EEPROM_NODE_ID_ADDRESS));
  CORE_DEBUG(PSTR("USER MEMORY SECTOR NODE ID: %d\n"), loadState(100));

  if (hwReadConfig(EEPROM_NODE_ID_ADDRESS) == 255) {
    mtwr = 0;
  } else {
    mtwr = 11000;
    no_present();
  }
  CORE_DEBUG(PSTR("MY_TRANSPORT_WAIT_MS: %d\n"), mtwr);
}

void no_present() {
  _coreConfig.presentationSent = true;
  _coreConfig.nodeRegistered = true;
}


void interrupt_Init(bool start) {
  //***
  //SET
  //NRF_GPIO_PIN_NOPULL
  //NRF_GPIO_PIN_PULLUP
  //NRF_GPIO_PIN_PULLDOWN
  //***
  nrf_gpio_cfg_input(PIN_BUTTON, NRF_GPIO_PIN_PULLUP);
  nrf_gpio_cfg_input(AXEL_INT, NRF_GPIO_PIN_NOPULL);
  nrf_gpio_cfg_input(GERKON_INT, NRF_GPIO_PIN_NOPULL);
  nrf_gpio_cfg_input(MAGNET_INT, NRF_GPIO_PIN_NOPULL);
  APP_GPIOTE_INIT(APP_GPIOTE_MAX_USERS);
  PIN_BUTTON_MASK = 1 << PIN_BUTTON;
  AXEL_INT_MASK = 1 << AXEL_INT;
  GERKON_INT_MASK = 1 << GERKON_INT;
  MAGNET_INT_MASK = 1 << MAGNET_INT;
  //  app_gpiote_user_register(p_user_id, pins_low_to_high_mask, pins_high_to_low_mask, event_handler)
  if (start == 0) {
    app_gpiote_user_register(&m_gpiote_user_id, AXEL_INT_MASK | GERKON_INT_MASK, GERKON_INT_MASK | MAGNET_INT_MASK | PIN_BUTTON_MASK, gpiote_event_handler);
    wait(5);
  } else if (start == 1) {
    app_gpiote_user_register(&m_gpiote_user_id, GERKON_INT_MASK, GERKON_INT_MASK | MAGNET_INT_MASK | PIN_BUTTON_MASK, gpiote_event_handler);
    wait(5);
  }
  app_gpiote_user_enable(m_gpiote_user_id);
  wait(5);
  axelIntStatus = 0;
  buttIntStatus = 0;
  gerkIntStatus = 0;
  magIntStatus = 0;
}


void gpiote_event_handler(uint32_t event_pins_low_to_high, uint32_t event_pins_high_to_low)
{
  MY_HW_RTC->CC[0] = (MY_HW_RTC->COUNTER + 2); // Taken from d0016 example code, ends the sleep delay

  if (PIN_BUTTON_MASK & event_pins_high_to_low) {
    if ((buttIntStatus == 0) && (axelIntStatus == 0) && (gerkIntStatus == 0) && (magIntStatus == 0)) {
      buttIntStatus = PIN_BUTTON;
    }
  }
  if (flag_nogateway_mode == 0) {
    if (AXEL_INT_MASK & event_pins_low_to_high) {
      if ((axelIntStatus == 0) && (buttIntStatus == 0) && (gerkIntStatus == 0) && (magIntStatus == 0) && (door_status == 1)) {
        axelIntStatus = AXEL_INT;
        axel_time0 = millis();
      }
    }
    if ((GERKON_INT_MASK & event_pins_low_to_high) || (GERKON_INT_MASK & event_pins_high_to_low)) {
      if ((axelIntStatus == 0) && (buttIntStatus == 0) && (gerkIntStatus == 0) && (magIntStatus == 0)) {
        gerkIntStatus = GERKON_INT;
      }
    }
    if (MAGNET_INT_MASK & event_pins_high_to_low) {
      if ((axelIntStatus == 0) && (buttIntStatus == 0) && (gerkIntStatus == 0) && (magIntStatus == 0) && (door_status == 1)) {
        magIntStatus = MAGNET_INT;
      }
    }
  }
}


void sensors_Init() {
  Wire.begin();
  wait(100);
  lis2 = new LIS2DW12Sensor (&Wire);
  vibro_Init();
  if (flag_nogateway_mode == 0) {
    if (digitalRead(GERKON_INT) == HIGH) {
      door_status = 1;
      interrupt_Init(0);
    } else {
      door_status = 0;
      interrupt_Init(1);
    }
    send(dwsMsg.set(door_status));
    wait(50);

    SLEEP_TIME_W = SLEEP_TIME;
    axelIntStatus = 0;
    buttIntStatus = 0;
    gerkIntStatus = 0;
    magIntStatus = 0;
    sendBatteryStatus(0);
    wait(100);
    blinky(2, 1, BLUE_LED);
    wait(100);
    blinky(2, 1, GREEN_LED);
    wait(100);
    blinky(2, 1, RED_LED);
    axel_time = millis();
  } else {
    interrupt_Init(0);
    blinky(5, 3, RED_LED);
  }
}


void config_Happy_node() {
  if (mtwr == 0) {
    myid = getNodeId();
    saveState(100, myid);
    mypar = _transportConfig.parentNodeId;
    old_mypar = mypar;
    saveState(101, mypar);
    saveState(102, _transportConfig.distanceGW);
  }
  if (mtwr != 0) {
    myid = getNodeId();
    if (myid != loadState(100)) {
      saveState(100, myid);
    }
    if (isTransportReady() == true) {
      mypar = _transportConfig.parentNodeId;
      if (mypar != loadState(101)) {
        saveState(101, mypar);
      }
      if (_transportConfig.distanceGW != loadState(102)) {
        saveState(102, _transportConfig.distanceGW);
      }
      present_only_parent();
    }
    if (isTransportReady() == false)
    {
      no_present();
      flag_fcount = 1;
      err_delivery_beat = 6;
      _transportConfig.nodeId = myid;
      _transportConfig.parentNodeId = loadState(101);
      _transportConfig.distanceGW = loadState(102);
      mypar = _transportConfig.parentNodeId;
      happy_node_mode();
      gateway_fail();
    }
  }
}


void send_Axel() {
  if (millis() - axel_time >= 5000) {
    blinky(2, 1, GREEN_LED);
    blinky(2, 1, RED_LED);
    blinky(2, 1, GREEN_LED);
    blinky(2, 1, RED_LED);
    blinky(2, 1, GREEN_LED);
    blinky(2, 1, RED_LED);

    send_a = send(vibroMsg.set(vibro));
    wait(50);
    if (send_a == false) {
      send_a = send(vibroMsg.set(vibro));
      wait(100);
    }
    if (send_a == true) {
      err_delivery_beat = 0;
      if (flag_nogateway_mode == 1) {
        flag_nogateway_mode = 0;
        CORE_DEBUG(PSTR("MyS: NORMAL GATEWAY MODE\n"));
        err_delivery_beat = 0;
      }
    } else {
      _transportSM.failedUplinkTransmissions = 0;
      if (err_delivery_beat < 6) {
        err_delivery_beat++;
      }
      if (err_delivery_beat == 5) {
        if (flag_nogateway_mode == 0) {
          gateway_fail();
          CORE_DEBUG(PSTR("MyS: LOST GATEWAY MODE\n"));
        }
      }
    }
    axel_time = millis();
    axelIntStatus = 0;
    nosleep = 0;
  } else {
    axelIntStatus = 0;
    nosleep = 0;
  }
}


void send_Gerkon() {
  if (digitalRead(GERKON_INT) == HIGH) {
    door_status = 1;
    interrupt_Init(0);
  } else {
    door_status = 0;
    interrupt_Init(1);
  }
  if (door_status == 1) {
    blinky(1, 1, GREEN_LED);
  } else {
    blinky(1, 1, RED_LED);
  }
  send_a = send(dwsMsg.set(door_status));
  wait(50);
  if (send_a == false) {
    send_a = send(dwsMsg.set(door_status));
    wait(100);
    if (send_a == false) {
      send_a = send(dwsMsg.set(door_status));
      wait(150);
    }
  }
  if (send_a == true) {
    err_delivery_beat = 0;
    if (flag_nogateway_mode == 1) {
      flag_nogateway_mode = 0;
      CORE_DEBUG(PSTR("MyS: NORMAL GATEWAY MODE\n"));
      err_delivery_beat = 0;
    }
  } else {
    _transportSM.failedUplinkTransmissions = 0;
    if (err_delivery_beat < 6) {
      err_delivery_beat++;
    }
    if (err_delivery_beat == 5) {
      if (flag_nogateway_mode == 0) {
        gateway_fail();
        CORE_DEBUG(PSTR("MyS: LOST GATEWAY MODE\n"));
      }
    }
  }
  gerkIntStatus = 0;
  nosleep = 0;
}


void send_Magnet() {
  blinky(2, 1, BLUE_LED);
  blinky(2, 1, RED_LED);
  blinky(2, 1, BLUE_LED);
  blinky(2, 1, RED_LED);
  blinky(2, 1, BLUE_LED);
  blinky(2, 1, RED_LED);
  send_a = send(mMsg.set(magnet_status));
  wait(50);
  if (send_a == false) {
    send_a = send(mMsg.set(magnet_status));
    wait(100);
  }
  if (send_a == true) {
    err_delivery_beat = 0;
    if (flag_nogateway_mode == 1) {
      flag_nogateway_mode = 0;
      CORE_DEBUG(PSTR("MyS: NORMAL GATEWAY MODE\n"));
      err_delivery_beat = 0;
    }
  } else {
    _transportSM.failedUplinkTransmissions = 0;
    if (err_delivery_beat < 6) {
      err_delivery_beat++;
    }
    if (err_delivery_beat == 5) {
      if (flag_nogateway_mode == 0) {
        gateway_fail();
        CORE_DEBUG(PSTR("MyS: LOST GATEWAY MODE\n"));
      }
    }
  }
  magIntStatus = 0;
  nosleep = 0;
}


void new_device() {
  hwWriteConfig(EEPROM_NODE_ID_ADDRESS, 255);
  saveState(100, 255);
  wdt_enable(WDTO_15MS);
}


void update_Happy_transport() {
  CORE_DEBUG(PSTR("MyS: UPDATE TRANSPORT CONFIGURATION\n"));
  mypar = _transportConfig.parentNodeId;
  if (mypar != loadState(101))
  {
    saveState(101, mypar);
  }
  if (_transportConfig.distanceGW != loadState(102))
  {
    saveState(102, _transportConfig.distanceGW);
  }
  present_only_parent();
  wait(50);
  nosleep = 0;
  flag_update_transport_param = 0;
}


void present_only_parent() {
  if (old_mypar != mypar) {
    CORE_DEBUG(PSTR("MyS: SEND LITTLE PRESENT:) WITH PARENT ID\n"));
    if (_sendRoute(build(_msgTmp, 0, NODE_SENSOR_ID, C_INTERNAL, 6).set(mypar))) {
      flag_sendRoute_parent = 0;
      old_mypar = mypar;
    } else {
      flag_sendRoute_parent = 1;
    }
  }
}


void happy_node_mode() {
  _transportSM.findingParentNode = false;
  _transportSM.transportActive = true;
  _transportSM.uplinkOk = true;
  _transportSM.pingActive = false;
  _transportSM.failureCounter = 0;
  _transportSM.uplinkOk = true;
  _transportSM.failureCounter = 0u;
  _transportSM.failedUplinkTransmissions = 0u;
  transportSwitchSM(stReady);
  CORE_DEBUG(PSTR("TRANSPORT: %d\n"), isTransportReady());
}


void gateway_fail() {
  flag_nogateway_mode = 1;
  flag_update_transport_param = 0;
  SLEEP_TIME_W = SLEEP_NOGW;
}


void check_parent() {
  _transportSM.findingParentNode = true;
  CORE_DEBUG(PSTR("MyS: SEND FIND PARENT REQUEST, WAIT RESPONSE\n"));
  _sendRoute(build(_msg, 255, NODE_SENSOR_ID, C_INTERNAL, 7).set(""));
  wait(1500, C_INTERNAL, 8);
  if (_msg.sensor == 255) {
    if (mGetCommand(_msg) == 3) {
      if (_msg.type == 8) {
        Ack_FP = 1;
        CORE_DEBUG(PSTR("MyS: PARENT RESPONSE FOUND\n"));
      }
    }
  }
  if (Ack_FP == 1) {
    CORE_DEBUG(PSTR("MyS: FIND PARENT PROCESS\n"));
    Ack_FP = 0;
    transportSwitchSM(stParent);
    flag_nogateway_mode = 0;
    flag_find_parent_process = 1;
    problem_mode_count = 0;
  } else {
    _transportSM.findingParentNode = false;
    CORE_DEBUG(PSTR("MyS: PARENT RESPONSE NOT FOUND\n"));
    _transportSM.failedUplinkTransmissions = 0;
    CORE_DEBUG(PSTR("TRANSPORT: %d\n"), isTransportReady());
    nosleep = 0;
    if (problem_mode_count < 9) {
      CORE_DEBUG(PSTR("PROBLEM MODE COUNTER: %d\n"), problem_mode_count);
      problem_mode_count++;
      SLEEP_TIME_W = SLEEP_TIME_W + SLEEP_TIME_W;
    }
  }
}


void find_parent_process() {
  flag_update_transport_param = 1;
  flag_find_parent_process = 0;
  CORE_DEBUG(PSTR("MyS: STANDART TRANSPORT MODE IS RESTORED\n"));
  err_delivery_beat = 0;
  SLEEP_TIME_W = SLEEP_TIME;
  nosleep = 0;
}


void sendBatteryStatus(bool start) {
  batt_cap = battery_level_in_percent(batteryVoltage);
  if (start == 1) {
    //if (batt_cap < old_batt_cap) {
    sendBatteryLevel(battery_level_in_percent(batteryVoltage), 1);
    wait(1500, C_INTERNAL, I_BATTERY_LEVEL);
    old_batt_cap = batt_cap;
    // }
  } else {
    sendBatteryLevel(battery_level_in_percent(batteryVoltage), 1);
    wait(1500, C_INTERNAL, I_BATTERY_LEVEL);
  }

  linkQuality = calculationRxQuality();
  if (linkQuality != old_linkQuality) {
    wait(10);
    sendSignalStrength(linkQuality);
    wait(50);
    old_linkQuality = linkQuality;
  }
}


bool sendSignalStrength(const int16_t level, const bool ack)
{
  return _sendRoute(build(_msgTmp, GATEWAY_ADDRESS, SIGNAL_Q_ID, C_SET, V_VAR1,
                          ack).set(level));
}
int16_t calculationRxQuality() {
  int16_t nRFRSSI_temp = transportGetReceivingRSSI();
  int16_t nRFRSSI = map(nRFRSSI_temp, -85, -40, 0, 100);
  if (nRFRSSI < 0) {
    nRFRSSI = 0;
  }
  if (nRFRSSI > 100) {
    nRFRSSI = 100;
  }
  return nRFRSSI;
}


void receive(const MyMessage & message)
{
  if (message.sensor == LEVEL_SENSIV_V_SENS_CHILD_ID) {
    if (message.type == V_VAR1) {
      conf_vibro_set = message.getByte();
      vibro_Init();
      saveState(230, conf_vibro_set);
      wait(200);
      send(conf_vsensMsg.set(conf_vibro_set));
      wait(200);
      blinky(3, 3, GREEN_LED);
      configMode = 0;
      nosleep = 0;
    }
  }
}


void vibro_Init() {
  if (conf_vibro_set == 1) {
    lis2->ODRTEMP = ODR_1Hz6_LP_ONLY;
  }
  if (conf_vibro_set == 2) {
    lis2->ODRTEMP = ODR_12Hz5;
  }
  if (conf_vibro_set == 3) {
    lis2->ODRTEMP = ODR_25Hz;
  }
  if (conf_vibro_set == 4) {
    lis2->ODRTEMP = ODR_100Hz;
  }
  if (conf_vibro_set == 5) {
    lis2->ODRTEMP = ODR_200Hz;
  }
  lis2->Enable_X();
  wait(100);
  lis2->Enable_Wake_Up_Detection();
  wait(100);
}


Uma lista completa dos arquivos do projeto está disponível no git .

Como sistema UD, uso o Majordomo há muito tempo . Neste artigo, descreverei um exemplo de como o sensor funciona na rede Maysensors através do controlador UD. Nesta modalidade, os dados do sensor são enviados através do gateway Maysensors para o sistema UD. O Majordomo implementa o suporte ao protocolo Mysensors em um módulo separado . O módulo para download e instalação está disponível no mercado de complementos do sistema UD na seção "equipamentos".


No momento, a implementação do Majordomo UD é a mais completa, suportada:

  • todos os tipos de dados mesensores,
  • trabalhar com OTA,
  • trabalhe com várias redes ao mesmo tempo em um módulo (multi-gate),
  • Suporte a dispositivo SmartSleep,
  • solicitar dados de sensores na rede quando o módulo iniciar,
  • pedido de confirmação de entrega da mensagem,
  • suporte para solicitações de serviço, como coleta de dados, pulsação, apresentação, reinicialização,
  • trabalhar com o NodeManager

É claro que existem falhas, o suporte adicionado anteriormente a gateways seriais. No processo de desenvolvimento natural do sistema, o Majordomo solicitou uma vida útil longa e atualmente não é suportado. Eu nem tive a chance de testar esse tipo de portão no Majordomo, pois esse recurso ficou indisponível antes de eu descobrir sobre os Mysensors. O desenvolvedor do módulo prometeu adicionar esse recurso novamente até setembro de 2019, mas o outono do dia 19 já passou e ainda não há suporte para a série de gateways :(.

Você também pode usar os gateways Mysqors mqtt com Majordomo, mas não através do módulo Mysensors, mas através do módulo MQTT.

No meu sensor, os sensores de choque e campo magnético transmitem apenas um quando acionados, e isso acabou sendo um pequeno problema. O módulo Dispositivos Simples não suporta esses tipos de sensores, é claro que existe um sensor comum, mas sua personalização das configurações é muito limitada. Ao adicionar um sensor, um problema desconfortável foi que, quando a próxima unidade veio do sensor, tive que iniciar um timer reverso para que, após um intervalo de tempo especificado no timer, zero fosse gravado na propriedade do objeto. Mas como tudo funciona através do método de “atualização de status” e depois registrando o zero, o módulo meysensors que recebe um novo estado enviou uma mensagem à rede com esses dados para o meu dispositivo, e o ponto é zero.A solução mais simples pareceu-me adicionar um novo método no qual o estado da propriedade1 para a propriedade2 será transferido e um timer será iniciado para escrever zero na propriedade2. Um objeto criado em dispositivos simples funcionará com a propriedade2 e no módulo Maysensors com a propriedade1.



if($this->getProperty('value2') == '1'){
$this->setProperty('status','1');
}

Em seguida, no método de atualização de status do objeto desejado, você precisa adicionar um início de timer:

if (gg("MysensorsSmoke03.status") == "1") {
SetTimeOut('AlarmShock','sg("MysensorsSmoke03.status","0");',10);
}

Vídeo com a operação do sensor no sistema Majordomo e no aplicativo Majordroid. Eu recomendo que você analise, sempre que possível, para mostrar a operação da funcionalidade principal e, é claro, seus gostos e assinaturas serão especialmente valiosos para o meu pequeno canal doméstico, mas, ao clicar na campainha, você não perderá um vídeo com meus novos sensores;).


A placa do dispositivo foi feita usando o programa DeepTrace. O desenvolvimento deste editor para o desenvolvimento de eletrônicos uma vez me permitiu expandir bastante minhas capacidades. Observo que não sou um engenheiro eletrônico profissional, minha experiência no desenvolvimento doméstico de placas-mãe é de um ano e meio ou dois. Para todos que fabricam seus dispositivos na placa de ensaio, eu recomendo tentar aprender algum tipo de editor, o YouTube está cheio de manuais em vídeo.





O suporte para chips nRF5 em Maysensors é baseado na biblioteca Sandeep Mistry - arduino-nRF5. Mas essa biblioteca não oferece suporte para os chips nRF52840, nRF52810 e os chips nRF52811 completamente novos. Eu tive que bifurcar e adicionar suporte para esses chips, uma transferência e adaptação foi feita a partir do Nordic SDK. Não havia suporte para dispositivos flexíveis, pois não havia necessidade específica de usar Mysensors e não havia suporte para a Porta1 para chips nRF52840. Mais recentemente, minha pesquisa sobre esse tópico e a pesquisa de outro membro da comunidade Maysensors foram combinadas e, como resultado, o suporte ao nRF52840 já foi obtido com a porta1, os pinos se tornaram apenas um mar.

O case para o sensor foi desenvolvido no programa SolidWorks, também foi dominado independentemente das lições do YouTube há cerca de um ano. O estojo foi impresso em uma impressora ANYCUBIC FOTON SLA. Fiquei muito feliz com a qualidade e a precisão da impressão. O único aspecto negativo é uma escolha bastante pobre de resinas UV com as quais essas impressoras domésticas podem trabalhar. Dimensões do dispositivo no estojo: 43 mm compridos, largura 26 mm, altura 12,5 mm. Dimensões da caixa com ímã: Comprimento 37 mm, Largura 11 mm, Altura 12,5 mm.









O consumo do sensor em um sonho variou de 4 μA a 7 μA, dependendo do chip selecionado. O consumo no modo de transferência de dados foi de 8 mA.

O sensor usa uma bateria CR2032. Todas as medidas foram feitas pelo "multifiler" chinês :) devido à falta de um profiler devido ao seu custo bastante grande :(.

O dispositivo pode ser repetido, use o esboço escrito ou escreva o seu. Para repetir o sensor, tudo o que você precisa está definido no meu github ( gerberas, código, modelos de casos ).

Se alguém estiver pronto para ajudar na criação de software sob o protocolo ZIGBEE, terei prazer em cooperar.

Se você estiver interessado neste projeto, vá para o grupo de telegrama, eles sempre receberão assistência para dominar não apenas o protocolo Maysensors , mas também o Zigbee e o BLE no nRF5, eles o aconselharão imediatamente sobre todos os problemas da programação do nRF52 no Arduino IDE e não apenas nele.

Carrinhos de bate-papo onde eu moro e pessoas como eu - @MYSENSORS_RUS .

Bom para todos!

All Articles