Salah satu masalah matematika pertama yang sangat menarik yang saya temui dirumuskan sebagai berikut: "dua sel sudut yang berlawanan dipotong dari papan catur, dapatkah sisanya dipotong menjadi" kartu domino "- figur dua sel yang berbagi satu sisi?" . Ini memiliki formulasi yang sangat sederhana, tidak seperti teorema hebat Fermat, ia memiliki solusi yang sederhana, elegan, tetapi tidak jelas (jika Anda tahu solusi untuk masalah tersebut, maka cobalah untuk menerapkannya pada gambar di sebelah kanan).

Dalam artikel ini, saya akan berbicara tentang beberapa algoritma yang dapat mencakup angka seluler sewenang-wenang di pesawat dengan kartu domino, jika memungkinkan, temukan situasi di mana hal ini tidak mungkin dan pertimbangkan jumlah kemungkinan dominasi tilings.
Nota bene! Materi dalam artikel ini adalah versi terpotong dari jupyter-notebook ini , semua gambar dan animasi yang Anda lihat di artikel dihasilkan oleh kode dari laptop ini (meskipun tidak akan ada animasi di pratinjau github). Omong-omong, gambar dari header juga dihasilkan menggunakan python / matplotlib
Kode bantuan untuk rendering, itu akan bergunaimport matplotlib.pyplot as plt
from matplotlib import colors as mcolors
colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)
by_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])), name)
for name, color in colors.items())
names = [name for hsv, name in by_hsv if name not in {'black', 'k', 'w', 'white', 'crimson', 'royalblue', 'limegreen', 'yellow', 'orange'}]
import random
random.shuffle(names)
names = ['crimson', 'royalblue', 'limegreen', 'yellow', 'orange', *names]
names.append('red')
names.append('white')
names.append('black')
def fill_cell(i, j, color, ax):
ax.fill([i, i, i + 1, i + 1, i], [j, j + 1, j + 1, j, j], color=color)
def draw_filling(filling):
if filling is not None:
n = len(filling)
m = len(filling[0])
fig = plt.figure(figsize=(m * 0.75, n * 0.75))
ax = fig.add_axes([0, 0, 1, 1])
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
for name, spine in ax.spines.items():
spine.set_visible(False)
spine.set_visible(False)
for i, row in enumerate(filling):
i = n - i - 1
for j, cell in enumerate(row):
fill_cell(j, i, names[cell], ax)
for i in range(n + 1):
ax.plot([0, m], [i, i], color='black')
for i in range(m + 1):
ax.plot([i, i], [0, n], color='black')
plt.close(fig)
return fig
else:
return None
Sebelum melanjutkan, selesaikan masalah aslinyaTidak mungkin melakukan ini, dan ada penjelasan yang indah dan sederhana untuk ini:
- Sisa papan memiliki 30 kotak hitam dan 32 kotak putih
- ,
Pemrograman Dinamis berdasarkan Profil
, , .
, - , . , ,
"" ,
" ?" . , , , .
: , , , , . — : - , , ( — , — ).
( ).
, .
, , — : ,


,


. , , , — . , , .
( , ). ( — , — ), , -
tiling = [
'........',
'........',
'........',
'........',
'........',
'........',
'........',
'........',
]
def count_tilings(tiling):
n = len(tiling)
m = len(tiling[0])
if ((n + 1) * m * 2 ** m) <= 10000000:
dp = [[[(0 if k != 0 or j != 0 or mask != 0 else 1) for mask in range(2 ** m)] for j in range(m)] for k in range(n + 1)]
for k in range(n):
for j in range(m):
for mask in range(2 ** m):
if k < n - 1 and tiling[k][j] == '.' and tiling[k + 1][j] == '.' and (mask & (1 << j)) == 0:
dp[k + ((j + 1) // m)][(j + 1) % m][mask + (1 << j)] += dp[k][j][mask]
if j < m - 1 and tiling[k][j] == '.' and tiling[k][j + 1] == '.' and (mask & (3 << j)) == 0:
dp[k + ((j + 1) // m)][(j + 1) % m][mask + (2 << j)] += dp[k][j][mask]
if ((1 << j) & mask) != 0 or tiling[k][j] != '.':
dp[k + ((j + 1) // m)][(j + 1) % m][(mask | (1 << j)) - (1 << j)] += dp[k][j][mask]
return dp
dp = count_tilings(tiling)
print(dp[8][0][0])
12988816
, . , — .
tiling_fib = [
'..',
'..',
'..',
'..',
'..',
'..',
'..',
'..'
]
dp = count_tilings(tiling_fib)
for i in range(8):
print(dp[i][0][0], end=' ')
1 1 2 3 5 8 13 21
, ,
tiling_no_corners_opposite = [
'.......#',
'........',
'........',
'........',
'........',
'........',
'........',
'#.......',
]
dp = count_tilings(tiling_no_corners_opposite)
print(dp[8][0][0])
0
. , ?
def cover_if_possible(tiling, dp=None):
if dp is None:
dp = count_tilings(tiling)
n = len(dp) - 1
m = len(dp[0])
if dp[n][0][0] == 0:
return None
result = [[-1 if tiling[i][j] == '#' else 0 for j in range(m)] for i in range(n)]
num = 0
k = n
j = 0
mask = 0
while k > 0 or j > 0:
prev_j = j - 1
prev_k = k
if prev_j == -1:
prev_j += m
prev_k -= 1
for prev_mask in range(2 ** m):
if prev_k < n - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k + 1][prev_j] == '.' and \
(prev_mask & (1 << prev_j)) == 0 and (prev_mask + (1 << prev_j)) == mask and dp[prev_k][prev_j][prev_mask] != 0:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k + 1][prev_j] = num
num += 1
break
elif prev_j < m - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k][prev_j + 1] == '.' and (prev_mask & (3 << prev_j)) == 0 and \
prev_mask + (2 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] != 0:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k][prev_j + 1] = num
num += 1
break
elif (((1 << prev_j) & prev_mask) != 0 or tiling[prev_k][prev_j] != '.') and \
(prev_mask | (1 << prev_j)) - (1 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] != 0:
mask = prev_mask
break
j = prev_j
k = prev_k
return result
filling = cover_if_possible(tiling)
draw_filling(filling)
,
tiling_random = [
'........',
'#.#.....',
'..#.....',
'........',
'........',
'........',
'........',
'...#....'
]
filling_random = cover_if_possible(tiling_random)
draw_filling(filling_random)

def maxmimum_cover(tiling):
n = len(tiling)
m = len(tiling[0])
if ((n + 1) * m * 2 ** m) <= 10000000:
dp = [[[(n * m if k != 0 or j != 0 or mask != 0 else 0) for mask in range(2 ** m)] for j in range(m)] for k in range(n + 1)]
for k in range(n):
for j in range(m):
for mask in range(2 ** m):
next_k, next_j = k + ((j + 1) // m), (j + 1) % m
if k < n - 1 and tiling[k][j] == '.' and tiling[k + 1][j] == '.' and (mask & (1 << j)) == 0:
dp[next_k][next_j][mask + (1 << j)] = min(dp[next_k][next_j][mask + (1 << j)], dp[k][j][mask])
if j < m - 1 and tiling[k][j] == '.' and tiling[k][j + 1] == '.' and (mask & (3 << j)) == 0:
dp[next_k][next_j][mask + (2 << j)] = min(dp[next_k][next_j][mask + (2 << j)], dp[k][j][mask])
if ((1 << j) & mask) != 0 or tiling[k][j] != '.':
dp[next_k][next_j][(mask | (1 << j)) - (1 << j)] = \
min(dp[next_k][next_j][(mask | (1 << j)) - (1 << j)], dp[k][j][mask])
else:
dp[next_k][next_j][(mask | (1 << j)) - (1 << j)] = \
min(dp[next_k][next_j][(mask | (1 << j)) - (1 << j)], dp[k][j][mask] + 1)
return dp
def cover_maximum_possible(tiling, dp=None):
if dp is None:
dp = maxmimum_cover(tiling)
n = len(dp) - 1
m = len(dp[0])
result = [[-1 if tiling[i][j] == '#' else -2 for j in range(m)] for i in range(n)]
num = 0
k = n
j = 0
mask = 0
while k > 0 or j > 0:
prev_j = j - 1
prev_k = k
if prev_j == -1:
prev_j += m
prev_k -= 1
for prev_mask in range(2 ** m):
if prev_k < n - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k + 1][prev_j] == '.' and \
(prev_mask & (1 << prev_j)) == 0 and (prev_mask + (1 << prev_j)) == mask and \
dp[prev_k][prev_j][prev_mask] == dp[k][j][mask]:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k + 1][prev_j] = num
num += 1
break
elif prev_j < m - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k][prev_j + 1] == '.' and (prev_mask & (3 << prev_j)) == 0 and \
prev_mask + (2 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] == dp[k][j][mask]:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k][prev_j + 1] = num
num += 1
break
elif (((1 << prev_j) & prev_mask) != 0 or tiling[prev_k][prev_j] != '.') and \
(prev_mask | (1 << prev_j)) - (1 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] == dp[k][j][mask]:
mask = prev_mask
break
elif ((1 << prev_j) & prev_mask) == 0 and tiling[prev_k][prev_j] == '.' and \
(prev_mask | (1 << prev_j)) - (1 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] + 1 == dp[k][j][mask]:
mask = prev_mask
break
j = prev_j
k = prev_k
return result
tiling_custom=[
'...####',
'....###',
'......#',
'#.#....',
'#......',
'##.....',
'###...#',
]
filling = cover_maximum_possible(tiling_custom)
draw_filling(filling)
! , . , . , , , , . , , , .
- . , — , , . , — . , , — , — , — . , , , . , . , , .
def check_valid(i, j, n, m, tiling):
return 0 <= i and i < n and 0 <= j and j < m and tiling[i][j] != '#'
def find_augmenting_path(x, y, n, m, visited, matched, tiling):
if not check_valid(x, y, n, m, tiling):
return False
if (x, y) in visited:
return False
visited.add((x, y))
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
if not check_valid(x + dx, y + dy, n, m, tiling):
continue
if (x + dx, y + dy) not in matched or find_augmenting_path(*matched[(x + dx , y + dy)], n, m, visited, matched, tiling):
matched[(x + dx, y + dy)] = (x, y)
return True
return False
def convert_match(matched, tiling, n, m):
result = [[-1 if tiling[i][j] == '#' else -2 for j in range(m)] for i in range(n)]
num = 0
for x, y in matched:
_x, _y = matched[(x, y)]
result[x][y] = num
result[_x][_y] = num
num += 1
return result
def match_with_flow(tiling):
result_slices = []
n = len(tiling)
m = len(tiling[0])
matched = dict()
rows = list(range(n))
columns = list(range(m))
random.shuffle(rows)
random.shuffle(columns)
result_slices.append(convert_match(matched, tiling, n, m))
for i in rows:
for j in columns:
if (i + j) % 2 == 1:
continue
visited = set()
if find_augmenting_path(i, j, n, m, visited, matched, tiling):
result_slices.append(convert_match(matched, tiling, n, m))
return result_slices
sequencial_match = match_with_flow(tiling_custom)
( ) " ". , , , . , , , , , .
UPD. - . , :
, .
! 5 .
. , . , . : , , , . . 4 , . 5 , , ( 5 , )
Lukis domino dalam 5 warnadef color_5(filling):
result = [[i for i in row] for row in filling]
domino_tiles = [[] for i in range(max(map(max, filling)) + 1)]
domino_neighbours = [set() for i in range(max(map(max, filling)) + 1)]
degree = [0 for i in range(max(map(max, filling)) + 1)]
n = len(filling)
m = len(filling[0])
for i, row in enumerate(filling):
for j, num in enumerate(row):
if num >= 0:
domino_tiles[num].append((i, j))
for i, tiles in enumerate(domino_tiles):
for x, y in tiles:
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1), (-1, -1), (-1, 1), (1, -1), (1, 1)]:
a, b = x + dx, y + dy
if 0 <= a and a < n and 0 <= b and b < m and filling[a][b] >= 0 and filling[a][b] != i \
and filling[a][b] not in domino_neighbours[i]:
domino_neighbours[i].add(filling[a][b])
degree[i] += 1
active_degrees = [set() for i in range(max(degree) + 1)]
for i, deg in enumerate(degree):
active_degrees[deg].add(i)
reversed_order = []
for step in range(len(domino_tiles)):
min_degree = min([i for i, dominoes in enumerate(active_degrees) if len(dominoes) > 0])
domino = active_degrees[min_degree].pop()
reversed_order.append(domino)
for other in domino_neighbours[domino]:
if other in active_degrees[degree[other]]:
active_degrees[degree[other]].remove(other)
degree[other] -= 1
active_degrees[degree[other]].add(other)
colors = [-1 for domino in domino_tiles]
slices = [draw_filling(result)]
for domino in reversed(reversed_order):
used_colors = [colors[other] for other in domino_neighbours[domino] if colors[other] != -1]
domino_color = len(used_colors)
for i, color in enumerate(sorted(set(used_colors))):
if i != color:
domino_color = i
break
if domino_color < 5:
colors[domino] = domino_color
for x, y in domino_tiles[domino]:
result[x][y] = domino_color
slices.append(draw_filling(result))
continue
c = 0
other = [other for other in domino_neighbours[domino] if colors[other] == c]
visited = set([other])
q = Queue()
q.put(other)
domino_was_reached = False
while not q.empty():
cur = q.get()
for other in domino_neighbours[cur]:
if other == domino:
domino_was_reached = True
break
if color[other] == c or color[other] == c + 1 and other not in visited:
visited.add(other)
q.put(other)
if not domino_was_reached:
for other in visited:
color[other] = color[other] ^ 1
for x, y in domino_tiles[other]:
result[x][y] = color[other]
color[domino] = c
for x, y in domino_tiles[domino]:
result[x][y] = c
slices.append(draw_filling(result))
continue
c = 2
other = [other for other in domino_neighbours[domino] if colors[other] == c]
visited = set([other])
q = Queue()
q.put(other)
domino_was_reached = False
while not q.empty():
cur = q.get()
for other in domino_neighbours[cur]:
if other == domino:
domino_was_reached = True
break
if color[other] == c or color[other] == c + 1 and other not in visited:
visited.add(other)
q.put(other)
for other in visited:
color[other] = color[other] ^ 1
for x, y in domino_tiles[other]:
result[x][y] = color[other]
color[domino] = c
for x, y in domino_tiles[domino]:
result[x][y] = c
slices.append(draw_filling(result))
return result, slices
Jika Anda akan menggunakan kode ini, maka perhatikan bahwa setiap langkah diambil di sana - ini diperlukan untuk animasi, yang sangat memperlambat algoritma. Jika Anda hanya membutuhkan lukisan terakhir, maka hapus semua kode yang menggunakan variabel slices.
Nah, akhirnya, coba salah satu contoh yang sedikit lebih awal