Sematkan catatan singkat programmer: duplikasi bagian dalam memori mikrokontroler

Kondisi awal


Ada perangkat berbasis mikrokontroler (misalnya, stm32f405rgt6 akan diambil). Ketika dihidupkan, ia menyesuaikan periferalnya berdasarkan preferensi pengguna atau pengaturan default. Pengguna dapat mengubah pengaturan selama operasi perangkat (sebagai aturan, hanya selama integrasi ke dalam kompleks) melalui salah satu antarmuka yang mungkin (menu CLI atau utilitas untuk pengaturan parameter operasi yang bekerja melalui protokol biner). Setelah mengatur parameter, pengguna menyimpan pengaturan dengan perintah khusus (juga melalui salah satu antarmuka yang mungkin).

Tugas


  • Untuk mengurangi waktu yang diperlukan untuk mengakses variabel pengaturan perangkat selama operasi, Anda perlu menjaga nilai saat ini dalam RAM (biasanya jumlah data tersebut bervariasi dari selusin variabel hingga 3 kilobyte tergantung pada perangkat).
  • Hal ini diperlukan untuk menyimpan pengaturan pengguna dalam rangkap dalam flash mikrokontroler.
  • Setiap instance pengaturan pengguna harus diakhiri dengan CRC32 segera setelah payload.
  • Untuk setiap instance pengaturan pengguna, halaman terpisah digunakan dalam memori flash (bahkan jika data berguna adalah 2 kb, dan halaman dibagi dengan 128 kb, maka seluruh halaman diberikan di bawah satu blok)
  • Kode perangkat lunak mikrokontroler harus menyimpan pengaturan default, yang seharusnya menjadi blok pengaturan pengguna jika keduanya memiliki data yang rusak

Upaya untuk dipecahkan


GCC (pada saat penulisan) tidak memiliki bendera untuk mendapatkan salinan bagian tersebut. Menambahkan skrip LD dengan << garis ajaib >> juga gagal. Seseorang dapat bekerja dengan keberatan, tetapi pendekatan ini sangat implisit dan mengarah pada kesalahan halus.

Keputusan


Solusinya adalah membuat salinan implisit dari entitas yang diinginkan (variabel, struktur, array, dll.) Dalam kode pengguna, diikuti dengan lokasinya di memori.

Membuat makro untuk penyalinan tersembunyi struktur


Mari kita buat makro dengan mana kita akan memesan tempat untuk struktur dalam RAM, 2 contoh flash-memory pada halaman terpisah dan dalam kode pengguna (untuk nilai awal).

#define USER_CFG_DATA_STRUCT(TYPE,NAME,...) \
    __attribute__((aligned(4), section (".user_cfg_data_ram_page"))) \
    TYPE NAME = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_default_page"))) \
    TYPE flash_default_page_##NAME = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_1"))) \
    TYPE flash_page_1_##NAME = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_2"))) \
    TYPE flash_page_2_##NAME = __VA_ARGS__;

Menggunakan makro, 4 instance dari struktur dengan nama yang berbeda akan dibuat. Dalam kode proyek (dengan pengecualian sistem untuk bekerja dengan halaman memori pengaturan pengguna), semua modul harus menggunakan struktur tanpa awalan (nama yang ditentukan dalam makro) yang akan di RAM (akan mungkin untuk mengubah modul yang bertanggung jawab untuk interaksi pengguna. Sisanya hanya boleh baca dari itu).

Contoh menggunakan makro dalam kode pengguna:

typedef struct _test_st {
    uint32_t a1;
    uint32_t a2;
} test_st_t;

USER_CFG_DATA_STRUCT(test_st_t, name_st, {
    .a1 = 1,
    .a2 = 2
})

Setelah contoh struktur name_st tersedia dari kode proyek.

Membuat makro untuk penyalinan tersembunyi dari entitas lain


Untuk membuat variabel, Anda hanya perlu melakukan substitusi makro untuk membuat struktur.
Untuk array, tambahkan jumlah elemen.

#define USER_CFG_DATA_VAR USER_CFG_DATA_STRCUT
#define USER_CFG_DATA_ARRAY(TYPE,NAME,SIZE,...) \
    __attribute__((aligned(4), section (".user_cfg_data_ram_page"))) \
    TYPE NAME[SIZE] = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_default_page"))) \
    TYPE flash_default_page_##NAME[SIZE] = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_1"))) \
    TYPE flash_page_1_##NAME[SIZE] = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_2"))) \
    TYPE flash_page_2_##NAME[SIZE] = __VA_ARGS__;

Prinsip penggunaannya mirip dengan penggunaan struktur.

Finalisasi skrip LD


Saat membuat salinan entitas, ditunjukkan di bagian mana mereka berada. Sekarang Anda harus membuat bagian ini dalam skrip LD. Untuk F4, skrip LD yang diperbesar dari ST akan terlihat seperti ini:

Skrip LD
MEMORY
{
    FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 1024K - 256K /* 256   user_cfg */
   USER_CFG_PAGE_1 (rx) : ORIGIN = 0x080C0000, LENGTH = 128K - 4     /* 4  CRC32 */
    USER_CFG_PAGE_2 (rx) : ORIGIN = 0x080E0000, LENGTH = 128K - 4     /* 4  CRC32 */
    CCM (xrw) : ORIGIN = 0x10000000, LENGTH = 64K
    RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
}

/*       CRC32.
       .      - . */
user_cfg_data_flash_page_1_size = LENGTH(user_cfg_PAGE_1) + 4;
user_cfg_data_flash_page_2_size = LENGTH(user_cfg_PAGE_2) + 4;
user_cfg_data_flash_page_size = user_cfg_data_flash_page_1_size;

/*
 * The '__stack' definition is required by crt0, do not remove it.
 */
__stack = ORIGIN(RAM) + LENGTH(RAM);

_estack = __stack;     /* STM specific definition */

/*
 * Default stack sizes.
 * These are used by the startup in order to allocate stacks
 * for the different modes.
 */

__Main_Stack_Size = 1024 ;

PROVIDE ( _Main_Stack_Size = __Main_Stack_Size ) ;

__Main_Stack_Limit = __stack  - __Main_Stack_Size ;

/*"PROVIDE" allows to easily override these values from an object file or the command line. */
PROVIDE ( _Main_Stack_Limit = __Main_Stack_Limit ) ;

/*
 * There will be a link error if there is not this amount of
 * RAM free at the end.
 */
_Minimum_Stack_Size = 512 ;

/*
 * Default heap definitions.
 * The heap start immediately after the last statically allocated
 * .sbss/.noinit section, and extends up to the main stack limit.
 */
PROVIDE ( _Heap_Begin = _end_noinit ) ;
PROVIDE ( _Heap_Limit = __stack - __Main_Stack_Size ) ;

SECTIONS
{
    .isr_vector :
    {
        KEEP(*(.isr_vector))         /* Interrupt vectors */
        KEEP(*(.cfmconfig))            /* Freescale configuration words */
        *(.after_vectors .after_vectors.*)    /* Startup code and ISR */
        . = ALIGN(4);
    } >FLASH

    .inits :
    {
        . = ALIGN(4);

        /*
         * These are the old initialisation sections, intended to contain
         * naked code, with the prologue/epilogue added by crti.o/crtn.o
         * when linking with startup files. The standalone startup code
         * currently does not run these, better use the init arrays below.
         */
        KEEP(*(.init))
        KEEP(*(.fini))

        . = ALIGN(4);

        /*
         * The preinit code, i.e. an array of pointers to initialisation
         * functions to be performed before constructors.
         */
        PROVIDE_HIDDEN (__preinit_array_start = .);

        /*
         * Used to run the SystemInit() before anything else.
         */
        KEEP(*(.preinit_array_sysinit .preinit_array_sysinit.*))

        /*
         * Used for other platform inits.
         */
        KEEP(*(.preinit_array_platform .preinit_array_platform.*))

        /*
         * The application inits. If you need to enforce some order in
         * execution, create new sections, as before.
         */
        KEEP(*(.preinit_array .preinit_array.*))

        PROVIDE_HIDDEN (__preinit_array_end = .);

        . = ALIGN(4);

        /*
         * The init code, i.e. an array of pointers to static constructors.
         */
        PROVIDE_HIDDEN (__init_array_start = .);
        KEEP(*(SORT(.init_array.*)))
        KEEP(*(.init_array))
        PROVIDE_HIDDEN (__init_array_end = .);

        . = ALIGN(4);

        /*
         * The fini code, i.e. an array of pointers to static destructors.
         */
        PROVIDE_HIDDEN (__fini_array_start = .);
        KEEP(*(SORT(.fini_array.*)))
        KEEP(*(.fini_array))
        PROVIDE_HIDDEN (__fini_array_end = .);
        . = ALIGN(4);

    } >FLASH

    /*
     * For some STRx devices, the beginning of the startup code
     * is stored in the .flashtext section, which goes to FLASH.
     */
    .flashtext :
    {
        . = ALIGN(4);
        *(.flashtext .flashtext.*)    /* Startup code */
        . = ALIGN(4);
    } >FLASH


    /*
     * The program code is stored in the .text section,
     * which goes to FLASH.
     */
    .text :
    {
        . = ALIGN(4);

        *(.text .text.*)            /* all remaining code */

        *(.rodata .rodata.*)         /* read-only data (constants) */

        *(vtable)                    /* C++ virtual tables */

        KEEP(*(.eh_frame*))

        /*
         * Stub sections generated by the linker, to glue together
         * ARM and Thumb code. .glue_7 is used for ARM code calling
         * Thumb code, and .glue_7t is used for Thumb code calling
         * ARM code. Apparently always generated by the linker, for some
         * architectures, so better leave them here.
         */
        *(.glue_7)
        *(.glue_7t)
    } >FLASH

    .user_cfg_data_flash_default_page :
    {
        . = ALIGN(4);
        user_cfg_data_flash_default_page_start = .;
        KEEP(*(.user_cfg_data_flash_default_page .user_cfg_data_flash_default_page.*))
        . = ALIGN(4);
        user_cfg_data_flash_default_page_stop = .;
    } >FLASH

    /* ARM magic sections */
    .ARM.extab :
       {
       *(.ARM.extab* .gnu.linkonce.armextab.*)
       } > FLASH

       __exidx_start = .;
       .ARM.exidx :
       {
       *(.ARM.exidx* .gnu.linkonce.armexidx.*)
       } > FLASH
       __exidx_end = .;

    . = ALIGN(4);
    _etext = .;
    __etext = .;

    /*
     * This address is used by the startup code to
     * initialise the .data section.
     */
    _sidata = _etext;

    /* MEMORY_ARRAY */
    /*
    .ROarraySection :
    {
         *(.ROarraySection .ROarraySection.*)
    } >MEMORY_ARRAY
    */

    /*
     * The initialised data section.
     * The program executes knowing that the data is in the RAM
     * but the loader puts the initial values in the FLASH (inidata).
     * It is one task of the startup to copy the initial values from
     * FLASH to RAM.
     */
    .data  : AT ( _sidata )
    {
        . = ALIGN(4);

        /* This is used by the startup code to initialise the .data section */
        _sdata = . ;            /* STM specific definition */
        __data_start__ = . ;
        *(.data_begin .data_begin.*)

        *(.data .data.*)

        *(.data_end .data_end.*)

        *(.ramfunc*)
        . = ALIGN(4);

        /* This is used by the startup code to initialise the .data section */
        _edata = . ;            /* STM specific definition */
        __data_end__ = . ;

    } >RAM


    /*
     * The uninitialised data section. NOLOAD is used to avoid
     * the "section `.bss' type changed to PROGBITS" warning
     */
    .bss (NOLOAD) :
    {
        . = ALIGN(4);
        __bss_start__ = .;         /* standard newlib definition */
        _sbss = .;              /* STM specific definition */
        *(.bss_begin .bss_begin.*)

        *(.bss .bss.*)
        *(COMMON)

        *(.bss_end .bss_end.*)
        . = ALIGN(4);
        __bss_end__ = .;        /* standard newlib definition */
        _ebss = . ;             /* STM specific definition */
    } >RAM

    .user_cfg_data_ram_page :
    {
        . = ALIGN(4);
        user_cfg_data_ram_page_start = .;
        KEEP(*(.user_cfg_data_ram_page .user_cfg_data_ram_page.*))
        . = ALIGN(4);
        user_cfg_data_ram_page_stop = .;
    } > CCM

    user_cfg_data_ram_page_size = user_cfg_data_ram_page_stop - user_cfg_data_ram_page_start;

    .user_cfg_data_page_1 :
    {
        . = ALIGN(4);
        user_cfg_data_flash_page_1_start = .;
         KEEP(*(.user_cfg_data_flash_page_1 .user_cfg_data_flash_page_1.*))
        . = ALIGN(4);
        user_cfg_data_flash_page_1_stop = .;
    } > user_cfg_PAGE_1

    .user_cfg_data_page_2 :
    {
        . = ALIGN(4);
        user_cfg_data_flash_page_2_start = .;
         KEEP(*(.user_cfg_data_flash_page_2 .user_cfg_data_flash_page_2.*))
        . = ALIGN(4);
        user_cfg_data_flash_page_2_stop = .;
    } > user_cfg_PAGE_2

    .noinit (NOLOAD) :
    {
        . = ALIGN(4);
        _noinit = .;

        *(.noinit .noinit.*)

         . = ALIGN(4) ;
        _end_noinit = .;
    } > RAM

    /* Mandatory to be word aligned, _sbrk assumes this */
    PROVIDE ( end = _end_noinit ); /* was _ebss */
    PROVIDE ( _end = _end_noinit );
    PROVIDE ( __end = _end_noinit );
    PROVIDE ( __end__ = _end_noinit );

    /*
     * Used for validation only, do not allocate anything here!
     *
     * This is just to check that there is enough RAM left for the Main
     * stack. It should generate an error if it's full.
     */
    ._check_stack :
    {
        . = ALIGN(4);
        . = . + _Minimum_Stack_Size ;
        . = ALIGN(4);
    } >RAM


    /* After that there are only debugging sections. */

    /* This can remove the debugging information from the standard libraries */
    /*
    DISCARD :
    {
     libc.a ( * )
     libm.a ( * )
     libgcc.a ( * )
     }
     */

    /* Stabs debugging sections.  */
    .stab          0 : { *(.stab) }
    .stabstr       0 : { *(.stabstr) }
    .stab.excl     0 : { *(.stab.excl) }
    .stab.exclstr  0 : { *(.stab.exclstr) }
    .stab.index    0 : { *(.stab.index) }
    .stab.indexstr 0 : { *(.stab.indexstr) }
    .comment       0 : { *(.comment) }
    /*
     * DWARF debug sections.
     * Symbols in the DWARF debugging sections are relative to the beginning
     * of the section so we begin them at 0.
     */
    /* DWARF 1 */
    .debug          0 : { *(.debug) }
    .line           0 : { *(.line) }
    /* GNU DWARF 1 extensions */
    .debug_srcinfo  0 : { *(.debug_srcinfo) }
    .debug_sfnames  0 : { *(.debug_sfnames) }
    /* DWARF 1.1 and DWARF 2 */
    .debug_aranges  0 : { *(.debug_aranges) }
    .debug_pubnames 0 : { *(.debug_pubnames) }
    /* DWARF 2 */
    .debug_info     0 : { *(.debug_info .gnu.linkonce.wi.*) }
    .debug_abbrev   0 : { *(.debug_abbrev) }
    .debug_line     0 : { *(.debug_line) }
    .debug_frame    0 : { *(.debug_frame) }
    .debug_str      0 : { *(.debug_str) }
    .debug_loc      0 : { *(.debug_loc) }
    .debug_macinfo  0 : { *(.debug_macinfo) }
    /* SGI/MIPS DWARF 2 extensions */
    .debug_weaknames 0 : { *(.debug_weaknames) }
    .debug_funcnames 0 : { *(.debug_funcnames) }
    .debug_typenames 0 : { *(.debug_typenames) }
    .debug_varnames  0 : { *(.debug_varnames) }
}

Dalam contoh ini, struktur konfigurasi tidak terletak di area RAM, tetapi di CCMRAM, untuk meningkatkan kinerja. Saya juga mencatat bahwa blok data pengaturan pengguna adalah 2 halaman flash terakhir, yang masing-masing adalah 128 kb.

Inisialisasi dan kontrol salinan


Perawatan apa yang akan terletak pada RAM terletak pada programmer. Sebelum menggunakan data dari area ini untuk pertama kalinya, Anda perlu menginisialisasi area. Dalam sekejap, saat memuat program ke dalam mikrokontroler, data akan direkam sebelumnya dengan nilai awal yang ditentukan dalam kode program. Ini akan membuat salinan yang tidak valid dari blok pengaturan pengguna di halaman terpisah jika mereka berakhir dengan CRC32 (karena tidak ada perhitungan CRC32 dilakukan. Kode Anda dapat melakukan ini. Juga sampai penggunaan pertama parameter konfigurasi).

Untuk menulis modul agar dapat bekerja dengan blok konfigurasi, Anda harus menggunakan variabel dari skrip LD. Berikut ini akan diperlukan:

extern uint32_t user_cfg_data_flash_default_page_start;
extern uint32_t user_cfg_data_flash_page_1_start;
extern uint32_t user_cfg_data_flash_page_2_start;
extern uint32_t user_cfg_data_ram_page_start;

extern uint32_t user_cfg_data_flash_page_size;
extern uint32_t user_cfg_data_ram_page_size;

Juga, jangan lupa bahwa user_cfg_data_flash_page_size dan user_cfg_data_ram_page_size dapat ditetapkan sebagai nilai normal. Tetapi user_cfg_data_flash_page_1_start dan variabel lain yang menyimpan alamat harus ditentukan melalui &.

Source: https://habr.com/ru/post/undefined/


All Articles