L'un des premiers problĂšmes mathĂ©matiques vraiment intĂ©ressants que j'ai rencontrĂ©s a Ă©tĂ© formulĂ© comme suit: "deux cellules de coin opposĂ©es ont Ă©tĂ© dĂ©coupĂ©es dans un Ă©chiquier, le reste peut-il ĂȘtre dĂ©coupĂ© en" dominos "- des figures de deux cellules qui partagent un cĂŽtĂ©?" . Il a une formulation trĂšs simple, contrairement au grand thĂ©orĂšme de Fermat, il a une solution simple, Ă©lĂ©gante, mais pas Ă©vidente (si vous connaissez la solution au problĂšme, essayez de l'appliquer Ă la figure de droite).

Dans cet article, je parlerai de plusieurs algorithmes qui peuvent couvrir une figure cellulaire arbitraire sur un plan avec des dominos, si possible, trouver des situations oĂč cela est impossible et considĂ©rer le nombre de pavages de dominos possibles.
Nota bene! Le contenu de cet article est une version tronquĂ©e de ce cahier jupyter , toutes les images et animations que vous voyez dans l'article sont gĂ©nĂ©rĂ©es par le code de cet ordinateur portable (bien qu'il n'y ait pas d'animations dans l'aperçu de github). Soit dit en passant, les images de l'en-tĂȘte sont Ă©galement gĂ©nĂ©rĂ©es Ă l'aide de python / matplotlib
Code d'aide pour le rendu, il vous sera utileimport matplotlib.pyplot as plt
from matplotlib import colors as mcolors
colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)
by_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])), name)
for name, color in colors.items())
names = [name for hsv, name in by_hsv if name not in {'black', 'k', 'w', 'white', 'crimson', 'royalblue', 'limegreen', 'yellow', 'orange'}]
import random
random.shuffle(names)
names = ['crimson', 'royalblue', 'limegreen', 'yellow', 'orange', *names]
names.append('red')
names.append('white')
names.append('black')
def fill_cell(i, j, color, ax):
ax.fill([i, i, i + 1, i + 1, i], [j, j + 1, j + 1, j, j], color=color)
def draw_filling(filling):
if filling is not None:
n = len(filling)
m = len(filling[0])
fig = plt.figure(figsize=(m * 0.75, n * 0.75))
ax = fig.add_axes([0, 0, 1, 1])
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
for name, spine in ax.spines.items():
spine.set_visible(False)
spine.set_visible(False)
for i, row in enumerate(filling):
i = n - i - 1
for j, cell in enumerate(row):
fill_cell(j, i, names[cell], ax)
for i in range(n + 1):
ax.plot([0, m], [i, i], color='black')
for i in range(m + 1):
ax.plot([i, i], [0, n], color='black')
plt.close(fig)
return fig
else:
return None
Avant de continuer, résoudre le problÚme d'origineIl est impossible de le faire, et il y a une explication belle et simple à cela:
- Le reste du plateau a 30 carrĂ©s noirs et 32 ââcarrĂ©s blancs
- ,
Programmation dynamique par profil
, , .
, - , . , ,
"" ,
" ?" . , , , .
: , , , , . â : - , , ( â , â ).
( ).
, .
, , â : ,


,


. , , , â . , , .
( , ). ( â , â ), , -
tiling = [
'........',
'........',
'........',
'........',
'........',
'........',
'........',
'........',
]
def count_tilings(tiling):
n = len(tiling)
m = len(tiling[0])
if ((n + 1) * m * 2 ** m) <= 10000000:
dp = [[[(0 if k != 0 or j != 0 or mask != 0 else 1) for mask in range(2 ** m)] for j in range(m)] for k in range(n + 1)]
for k in range(n):
for j in range(m):
for mask in range(2 ** m):
if k < n - 1 and tiling[k][j] == '.' and tiling[k + 1][j] == '.' and (mask & (1 << j)) == 0:
dp[k + ((j + 1) // m)][(j + 1) % m][mask + (1 << j)] += dp[k][j][mask]
if j < m - 1 and tiling[k][j] == '.' and tiling[k][j + 1] == '.' and (mask & (3 << j)) == 0:
dp[k + ((j + 1) // m)][(j + 1) % m][mask + (2 << j)] += dp[k][j][mask]
if ((1 << j) & mask) != 0 or tiling[k][j] != '.':
dp[k + ((j + 1) // m)][(j + 1) % m][(mask | (1 << j)) - (1 << j)] += dp[k][j][mask]
return dp
dp = count_tilings(tiling)
print(dp[8][0][0])
12988816
, . , â .
tiling_fib = [
'..',
'..',
'..',
'..',
'..',
'..',
'..',
'..'
]
dp = count_tilings(tiling_fib)
for i in range(8):
print(dp[i][0][0], end=' ')
1 1 2 3 5 8 13 21
, ,
tiling_no_corners_opposite = [
'.......#',
'........',
'........',
'........',
'........',
'........',
'........',
'#.......',
]
dp = count_tilings(tiling_no_corners_opposite)
print(dp[8][0][0])
0
. , ?
def cover_if_possible(tiling, dp=None):
if dp is None:
dp = count_tilings(tiling)
n = len(dp) - 1
m = len(dp[0])
if dp[n][0][0] == 0:
return None
result = [[-1 if tiling[i][j] == '#' else 0 for j in range(m)] for i in range(n)]
num = 0
k = n
j = 0
mask = 0
while k > 0 or j > 0:
prev_j = j - 1
prev_k = k
if prev_j == -1:
prev_j += m
prev_k -= 1
for prev_mask in range(2 ** m):
if prev_k < n - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k + 1][prev_j] == '.' and \
(prev_mask & (1 << prev_j)) == 0 and (prev_mask + (1 << prev_j)) == mask and dp[prev_k][prev_j][prev_mask] != 0:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k + 1][prev_j] = num
num += 1
break
elif prev_j < m - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k][prev_j + 1] == '.' and (prev_mask & (3 << prev_j)) == 0 and \
prev_mask + (2 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] != 0:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k][prev_j + 1] = num
num += 1
break
elif (((1 << prev_j) & prev_mask) != 0 or tiling[prev_k][prev_j] != '.') and \
(prev_mask | (1 << prev_j)) - (1 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] != 0:
mask = prev_mask
break
j = prev_j
k = prev_k
return result
filling = cover_if_possible(tiling)
draw_filling(filling)
,
tiling_random = [
'........',
'#.#.....',
'..#.....',
'........',
'........',
'........',
'........',
'...#....'
]
filling_random = cover_if_possible(tiling_random)
draw_filling(filling_random)

def maxmimum_cover(tiling):
n = len(tiling)
m = len(tiling[0])
if ((n + 1) * m * 2 ** m) <= 10000000:
dp = [[[(n * m if k != 0 or j != 0 or mask != 0 else 0) for mask in range(2 ** m)] for j in range(m)] for k in range(n + 1)]
for k in range(n):
for j in range(m):
for mask in range(2 ** m):
next_k, next_j = k + ((j + 1) // m), (j + 1) % m
if k < n - 1 and tiling[k][j] == '.' and tiling[k + 1][j] == '.' and (mask & (1 << j)) == 0:
dp[next_k][next_j][mask + (1 << j)] = min(dp[next_k][next_j][mask + (1 << j)], dp[k][j][mask])
if j < m - 1 and tiling[k][j] == '.' and tiling[k][j + 1] == '.' and (mask & (3 << j)) == 0:
dp[next_k][next_j][mask + (2 << j)] = min(dp[next_k][next_j][mask + (2 << j)], dp[k][j][mask])
if ((1 << j) & mask) != 0 or tiling[k][j] != '.':
dp[next_k][next_j][(mask | (1 << j)) - (1 << j)] = \
min(dp[next_k][next_j][(mask | (1 << j)) - (1 << j)], dp[k][j][mask])
else:
dp[next_k][next_j][(mask | (1 << j)) - (1 << j)] = \
min(dp[next_k][next_j][(mask | (1 << j)) - (1 << j)], dp[k][j][mask] + 1)
return dp
def cover_maximum_possible(tiling, dp=None):
if dp is None:
dp = maxmimum_cover(tiling)
n = len(dp) - 1
m = len(dp[0])
result = [[-1 if tiling[i][j] == '#' else -2 for j in range(m)] for i in range(n)]
num = 0
k = n
j = 0
mask = 0
while k > 0 or j > 0:
prev_j = j - 1
prev_k = k
if prev_j == -1:
prev_j += m
prev_k -= 1
for prev_mask in range(2 ** m):
if prev_k < n - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k + 1][prev_j] == '.' and \
(prev_mask & (1 << prev_j)) == 0 and (prev_mask + (1 << prev_j)) == mask and \
dp[prev_k][prev_j][prev_mask] == dp[k][j][mask]:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k + 1][prev_j] = num
num += 1
break
elif prev_j < m - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k][prev_j + 1] == '.' and (prev_mask & (3 << prev_j)) == 0 and \
prev_mask + (2 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] == dp[k][j][mask]:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k][prev_j + 1] = num
num += 1
break
elif (((1 << prev_j) & prev_mask) != 0 or tiling[prev_k][prev_j] != '.') and \
(prev_mask | (1 << prev_j)) - (1 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] == dp[k][j][mask]:
mask = prev_mask
break
elif ((1 << prev_j) & prev_mask) == 0 and tiling[prev_k][prev_j] == '.' and \
(prev_mask | (1 << prev_j)) - (1 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] + 1 == dp[k][j][mask]:
mask = prev_mask
break
j = prev_j
k = prev_k
return result
tiling_custom=[
'...####',
'....###',
'......#',
'#.#....',
'#......',
'##.....',
'###...#',
]
filling = cover_maximum_possible(tiling_custom)
draw_filling(filling)
! , . , . , , , , . , , , .
- . , â , , . , â . , , â , â , â . , , , . , . , , .
def check_valid(i, j, n, m, tiling):
return 0 <= i and i < n and 0 <= j and j < m and tiling[i][j] != '#'
def find_augmenting_path(x, y, n, m, visited, matched, tiling):
if not check_valid(x, y, n, m, tiling):
return False
if (x, y) in visited:
return False
visited.add((x, y))
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
if not check_valid(x + dx, y + dy, n, m, tiling):
continue
if (x + dx, y + dy) not in matched or find_augmenting_path(*matched[(x + dx , y + dy)], n, m, visited, matched, tiling):
matched[(x + dx, y + dy)] = (x, y)
return True
return False
def convert_match(matched, tiling, n, m):
result = [[-1 if tiling[i][j] == '#' else -2 for j in range(m)] for i in range(n)]
num = 0
for x, y in matched:
_x, _y = matched[(x, y)]
result[x][y] = num
result[_x][_y] = num
num += 1
return result
def match_with_flow(tiling):
result_slices = []
n = len(tiling)
m = len(tiling[0])
matched = dict()
rows = list(range(n))
columns = list(range(m))
random.shuffle(rows)
random.shuffle(columns)
result_slices.append(convert_match(matched, tiling, n, m))
for i in rows:
for j in columns:
if (i + j) % 2 == 1:
continue
visited = set()
if find_augmenting_path(i, j, n, m, visited, matched, tiling):
result_slices.append(convert_match(matched, tiling, n, m))
return result_slices
sequencial_match = match_with_flow(tiling_custom)
( ) " ". , , , . , , , , , .
UPD. - . , :
, .
! 5 .
. , . , . : , , , . . 4 , . 5 , , ( 5 , )
Peinture de dominos en 5 couleursdef color_5(filling):
result = [[i for i in row] for row in filling]
domino_tiles = [[] for i in range(max(map(max, filling)) + 1)]
domino_neighbours = [set() for i in range(max(map(max, filling)) + 1)]
degree = [0 for i in range(max(map(max, filling)) + 1)]
n = len(filling)
m = len(filling[0])
for i, row in enumerate(filling):
for j, num in enumerate(row):
if num >= 0:
domino_tiles[num].append((i, j))
for i, tiles in enumerate(domino_tiles):
for x, y in tiles:
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1), (-1, -1), (-1, 1), (1, -1), (1, 1)]:
a, b = x + dx, y + dy
if 0 <= a and a < n and 0 <= b and b < m and filling[a][b] >= 0 and filling[a][b] != i \
and filling[a][b] not in domino_neighbours[i]:
domino_neighbours[i].add(filling[a][b])
degree[i] += 1
active_degrees = [set() for i in range(max(degree) + 1)]
for i, deg in enumerate(degree):
active_degrees[deg].add(i)
reversed_order = []
for step in range(len(domino_tiles)):
min_degree = min([i for i, dominoes in enumerate(active_degrees) if len(dominoes) > 0])
domino = active_degrees[min_degree].pop()
reversed_order.append(domino)
for other in domino_neighbours[domino]:
if other in active_degrees[degree[other]]:
active_degrees[degree[other]].remove(other)
degree[other] -= 1
active_degrees[degree[other]].add(other)
colors = [-1 for domino in domino_tiles]
slices = [draw_filling(result)]
for domino in reversed(reversed_order):
used_colors = [colors[other] for other in domino_neighbours[domino] if colors[other] != -1]
domino_color = len(used_colors)
for i, color in enumerate(sorted(set(used_colors))):
if i != color:
domino_color = i
break
if domino_color < 5:
colors[domino] = domino_color
for x, y in domino_tiles[domino]:
result[x][y] = domino_color
slices.append(draw_filling(result))
continue
c = 0
other = [other for other in domino_neighbours[domino] if colors[other] == c]
visited = set([other])
q = Queue()
q.put(other)
domino_was_reached = False
while not q.empty():
cur = q.get()
for other in domino_neighbours[cur]:
if other == domino:
domino_was_reached = True
break
if color[other] == c or color[other] == c + 1 and other not in visited:
visited.add(other)
q.put(other)
if not domino_was_reached:
for other in visited:
color[other] = color[other] ^ 1
for x, y in domino_tiles[other]:
result[x][y] = color[other]
color[domino] = c
for x, y in domino_tiles[domino]:
result[x][y] = c
slices.append(draw_filling(result))
continue
c = 2
other = [other for other in domino_neighbours[domino] if colors[other] == c]
visited = set([other])
q = Queue()
q.put(other)
domino_was_reached = False
while not q.empty():
cur = q.get()
for other in domino_neighbours[cur]:
if other == domino:
domino_was_reached = True
break
if color[other] == c or color[other] == c + 1 and other not in visited:
visited.add(other)
q.put(other)
for other in visited:
color[other] = color[other] ^ 1
for x, y in domino_tiles[other]:
result[x][y] = color[other]
color[domino] = c
for x, y in domino_tiles[domino]:
result[x][y] = c
slices.append(draw_filling(result))
return result, slices
Si vous allez utiliser ce code, notez que chaque étape y est dessinée - c'était nécessaire pour l'animation, ce qui ralentit considérablement l'algorithme. Si vous n'avez besoin que de la peinture finale, supprimez tout le code qui utilise la variable slices.
Enfin, essayez un des exemples un peu plus tĂŽt