Intégrer les brèves notes du programmeur: duplication de section dans la mémoire du microcontrôleur

Conditions initiales


Il existe un appareil basé sur un microcontrôleur (par exemple, stm32f405rgt6 sera utilisé). Lorsqu'il est allumé, il ajuste ses périphériques en fonction des préférences de l'utilisateur ou des paramètres par défaut. L'utilisateur peut modifier les paramètres pendant le fonctionnement de l'appareil (en règle générale, uniquement lors de l'intégration dans le complexe) via l'une des interfaces possibles (menu CLI ou utilitaire pour définir les paramètres de fonctionnement via le protocole binaire). Après avoir défini les paramètres, l'utilisateur enregistre les paramètres avec une commande spéciale (également via l'une des interfaces possibles).

Tâche


  • Pour réduire le temps nécessaire pour accéder aux variables des paramètres de l'appareil pendant le fonctionnement, vous devez conserver les valeurs actuelles dans la RAM (généralement, la quantité de ces données varie d'une douzaine de variables à 3 kilo-octets selon l'appareil).
  • Il est nécessaire de stocker les paramètres utilisateur en double dans le flash du microcontrôleur.
  • Chaque instance de paramètres utilisateur doit se terminer par CRC32 immédiatement après la charge utile.
  • Pour chaque instance de paramètres utilisateur, une page distincte est utilisée dans la mémoire flash (même si les données utiles sont de 2 Ko et que les pages sont divisées par 128 Ko, alors la page entière est donnée sous un seul bloc)
  • Le code du logiciel du microcontrôleur doit stocker les paramètres par défaut, qui doivent être les blocs de paramètres utilisateur si les deux contiennent des données corrompues.

Tentatives de résolution


GCC (au moment de la rédaction) n'a pas de drapeau pour obtenir une copie de la section. Compléter le script LD avec des << lignes magiques >> échoue également. On pourrait travailler avec objcopy, mais cette approche est très implicite et conduit à des erreurs subtiles.

Décision


La solution consiste à créer des copies implicites de l'entité souhaitée (variable, structure, tableau, etc.) dans le code utilisateur, suivi de leur emplacement en mémoire.

Création d'une macro pour la copie cachée de structures


Créons une macro avec laquelle nous réserverons une place pour la structure en RAM, 2 instances de mémoire flash sur des pages séparées et dans le code utilisateur (pour les valeurs initiales).

#define USER_CFG_DATA_STRUCT(TYPE,NAME,...) \
    __attribute__((aligned(4), section (".user_cfg_data_ram_page"))) \
    TYPE NAME = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_default_page"))) \
    TYPE flash_default_page_##NAME = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_1"))) \
    TYPE flash_page_1_##NAME = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_2"))) \
    TYPE flash_page_2_##NAME = __VA_ARGS__;

À l'aide d'une macro, 4 instances de la structure avec des noms différents seront créées. Dans le code du projet (à l'exception du système pour travailler avec les pages de mémoire des paramètres utilisateur), tous les modules doivent utiliser une structure sans préfixe (le nom spécifié dans la macro) qui sera en RAM (il sera possible de changer les modules qui sont responsables de l'interaction avec l'utilisateur. Le reste ne devrait que lire).

Un exemple d'utilisation d'une macro dans le code utilisateur:

typedef struct _test_st {
    uint32_t a1;
    uint32_t a2;
} test_st_t;

USER_CFG_DATA_STRUCT(test_st_t, name_st, {
    .a1 = 1,
    .a2 = 2
})

Une fois que l'instance de la structure name_st est disponible à partir du code de projet.

Création de macros pour la copie cachée d'autres entités


Pour créer une variable, il vous suffit de faire la substitution de macro pour créer des structures.
Pour les tableaux, ajoutez le nombre d'éléments.

#define USER_CFG_DATA_VAR USER_CFG_DATA_STRCUT
#define USER_CFG_DATA_ARRAY(TYPE,NAME,SIZE,...) \
    __attribute__((aligned(4), section (".user_cfg_data_ram_page"))) \
    TYPE NAME[SIZE] = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_default_page"))) \
    TYPE flash_default_page_##NAME[SIZE] = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_1"))) \
    TYPE flash_page_1_##NAME[SIZE] = __VA_ARGS__; \
    __attribute__((aligned(4), section (".user_cfg_data_flash_page_2"))) \
    TYPE flash_page_2_##NAME[SIZE] = __VA_ARGS__;

Le principe d'utilisation est similaire à l'utilisation de la structure.

Finalisation du script LD


Lors de la création de copies d'entités, il a été indiqué dans quelles sections elles se trouvent. Vous devez maintenant créer ces sections dans le script LD. Pour F4, le script LD augmenté de ST ressemblera à ceci:

Script LD
MEMORY
{
    FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 1024K - 256K /* 256   user_cfg */
   USER_CFG_PAGE_1 (rx) : ORIGIN = 0x080C0000, LENGTH = 128K - 4     /* 4  CRC32 */
    USER_CFG_PAGE_2 (rx) : ORIGIN = 0x080E0000, LENGTH = 128K - 4     /* 4  CRC32 */
    CCM (xrw) : ORIGIN = 0x10000000, LENGTH = 64K
    RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
}

/*       CRC32.
       .      - . */
user_cfg_data_flash_page_1_size = LENGTH(user_cfg_PAGE_1) + 4;
user_cfg_data_flash_page_2_size = LENGTH(user_cfg_PAGE_2) + 4;
user_cfg_data_flash_page_size = user_cfg_data_flash_page_1_size;

/*
 * The '__stack' definition is required by crt0, do not remove it.
 */
__stack = ORIGIN(RAM) + LENGTH(RAM);

_estack = __stack;     /* STM specific definition */

/*
 * Default stack sizes.
 * These are used by the startup in order to allocate stacks
 * for the different modes.
 */

__Main_Stack_Size = 1024 ;

PROVIDE ( _Main_Stack_Size = __Main_Stack_Size ) ;

__Main_Stack_Limit = __stack  - __Main_Stack_Size ;

/*"PROVIDE" allows to easily override these values from an object file or the command line. */
PROVIDE ( _Main_Stack_Limit = __Main_Stack_Limit ) ;

/*
 * There will be a link error if there is not this amount of
 * RAM free at the end.
 */
_Minimum_Stack_Size = 512 ;

/*
 * Default heap definitions.
 * The heap start immediately after the last statically allocated
 * .sbss/.noinit section, and extends up to the main stack limit.
 */
PROVIDE ( _Heap_Begin = _end_noinit ) ;
PROVIDE ( _Heap_Limit = __stack - __Main_Stack_Size ) ;

SECTIONS
{
    .isr_vector :
    {
        KEEP(*(.isr_vector))         /* Interrupt vectors */
        KEEP(*(.cfmconfig))            /* Freescale configuration words */
        *(.after_vectors .after_vectors.*)    /* Startup code and ISR */
        . = ALIGN(4);
    } >FLASH

    .inits :
    {
        . = ALIGN(4);

        /*
         * These are the old initialisation sections, intended to contain
         * naked code, with the prologue/epilogue added by crti.o/crtn.o
         * when linking with startup files. The standalone startup code
         * currently does not run these, better use the init arrays below.
         */
        KEEP(*(.init))
        KEEP(*(.fini))

        . = ALIGN(4);

        /*
         * The preinit code, i.e. an array of pointers to initialisation
         * functions to be performed before constructors.
         */
        PROVIDE_HIDDEN (__preinit_array_start = .);

        /*
         * Used to run the SystemInit() before anything else.
         */
        KEEP(*(.preinit_array_sysinit .preinit_array_sysinit.*))

        /*
         * Used for other platform inits.
         */
        KEEP(*(.preinit_array_platform .preinit_array_platform.*))

        /*
         * The application inits. If you need to enforce some order in
         * execution, create new sections, as before.
         */
        KEEP(*(.preinit_array .preinit_array.*))

        PROVIDE_HIDDEN (__preinit_array_end = .);

        . = ALIGN(4);

        /*
         * The init code, i.e. an array of pointers to static constructors.
         */
        PROVIDE_HIDDEN (__init_array_start = .);
        KEEP(*(SORT(.init_array.*)))
        KEEP(*(.init_array))
        PROVIDE_HIDDEN (__init_array_end = .);

        . = ALIGN(4);

        /*
         * The fini code, i.e. an array of pointers to static destructors.
         */
        PROVIDE_HIDDEN (__fini_array_start = .);
        KEEP(*(SORT(.fini_array.*)))
        KEEP(*(.fini_array))
        PROVIDE_HIDDEN (__fini_array_end = .);
        . = ALIGN(4);

    } >FLASH

    /*
     * For some STRx devices, the beginning of the startup code
     * is stored in the .flashtext section, which goes to FLASH.
     */
    .flashtext :
    {
        . = ALIGN(4);
        *(.flashtext .flashtext.*)    /* Startup code */
        . = ALIGN(4);
    } >FLASH


    /*
     * The program code is stored in the .text section,
     * which goes to FLASH.
     */
    .text :
    {
        . = ALIGN(4);

        *(.text .text.*)            /* all remaining code */

        *(.rodata .rodata.*)         /* read-only data (constants) */

        *(vtable)                    /* C++ virtual tables */

        KEEP(*(.eh_frame*))

        /*
         * Stub sections generated by the linker, to glue together
         * ARM and Thumb code. .glue_7 is used for ARM code calling
         * Thumb code, and .glue_7t is used for Thumb code calling
         * ARM code. Apparently always generated by the linker, for some
         * architectures, so better leave them here.
         */
        *(.glue_7)
        *(.glue_7t)
    } >FLASH

    .user_cfg_data_flash_default_page :
    {
        . = ALIGN(4);
        user_cfg_data_flash_default_page_start = .;
        KEEP(*(.user_cfg_data_flash_default_page .user_cfg_data_flash_default_page.*))
        . = ALIGN(4);
        user_cfg_data_flash_default_page_stop = .;
    } >FLASH

    /* ARM magic sections */
    .ARM.extab :
       {
       *(.ARM.extab* .gnu.linkonce.armextab.*)
       } > FLASH

       __exidx_start = .;
       .ARM.exidx :
       {
       *(.ARM.exidx* .gnu.linkonce.armexidx.*)
       } > FLASH
       __exidx_end = .;

    . = ALIGN(4);
    _etext = .;
    __etext = .;

    /*
     * This address is used by the startup code to
     * initialise the .data section.
     */
    _sidata = _etext;

    /* MEMORY_ARRAY */
    /*
    .ROarraySection :
    {
         *(.ROarraySection .ROarraySection.*)
    } >MEMORY_ARRAY
    */

    /*
     * The initialised data section.
     * The program executes knowing that the data is in the RAM
     * but the loader puts the initial values in the FLASH (inidata).
     * It is one task of the startup to copy the initial values from
     * FLASH to RAM.
     */
    .data  : AT ( _sidata )
    {
        . = ALIGN(4);

        /* This is used by the startup code to initialise the .data section */
        _sdata = . ;            /* STM specific definition */
        __data_start__ = . ;
        *(.data_begin .data_begin.*)

        *(.data .data.*)

        *(.data_end .data_end.*)

        *(.ramfunc*)
        . = ALIGN(4);

        /* This is used by the startup code to initialise the .data section */
        _edata = . ;            /* STM specific definition */
        __data_end__ = . ;

    } >RAM


    /*
     * The uninitialised data section. NOLOAD is used to avoid
     * the "section `.bss' type changed to PROGBITS" warning
     */
    .bss (NOLOAD) :
    {
        . = ALIGN(4);
        __bss_start__ = .;         /* standard newlib definition */
        _sbss = .;              /* STM specific definition */
        *(.bss_begin .bss_begin.*)

        *(.bss .bss.*)
        *(COMMON)

        *(.bss_end .bss_end.*)
        . = ALIGN(4);
        __bss_end__ = .;        /* standard newlib definition */
        _ebss = . ;             /* STM specific definition */
    } >RAM

    .user_cfg_data_ram_page :
    {
        . = ALIGN(4);
        user_cfg_data_ram_page_start = .;
        KEEP(*(.user_cfg_data_ram_page .user_cfg_data_ram_page.*))
        . = ALIGN(4);
        user_cfg_data_ram_page_stop = .;
    } > CCM

    user_cfg_data_ram_page_size = user_cfg_data_ram_page_stop - user_cfg_data_ram_page_start;

    .user_cfg_data_page_1 :
    {
        . = ALIGN(4);
        user_cfg_data_flash_page_1_start = .;
         KEEP(*(.user_cfg_data_flash_page_1 .user_cfg_data_flash_page_1.*))
        . = ALIGN(4);
        user_cfg_data_flash_page_1_stop = .;
    } > user_cfg_PAGE_1

    .user_cfg_data_page_2 :
    {
        . = ALIGN(4);
        user_cfg_data_flash_page_2_start = .;
         KEEP(*(.user_cfg_data_flash_page_2 .user_cfg_data_flash_page_2.*))
        . = ALIGN(4);
        user_cfg_data_flash_page_2_stop = .;
    } > user_cfg_PAGE_2

    .noinit (NOLOAD) :
    {
        . = ALIGN(4);
        _noinit = .;

        *(.noinit .noinit.*)

         . = ALIGN(4) ;
        _end_noinit = .;
    } > RAM

    /* Mandatory to be word aligned, _sbrk assumes this */
    PROVIDE ( end = _end_noinit ); /* was _ebss */
    PROVIDE ( _end = _end_noinit );
    PROVIDE ( __end = _end_noinit );
    PROVIDE ( __end__ = _end_noinit );

    /*
     * Used for validation only, do not allocate anything here!
     *
     * This is just to check that there is enough RAM left for the Main
     * stack. It should generate an error if it's full.
     */
    ._check_stack :
    {
        . = ALIGN(4);
        . = . + _Minimum_Stack_Size ;
        . = ALIGN(4);
    } >RAM


    /* After that there are only debugging sections. */

    /* This can remove the debugging information from the standard libraries */
    /*
    DISCARD :
    {
     libc.a ( * )
     libm.a ( * )
     libgcc.a ( * )
     }
     */

    /* Stabs debugging sections.  */
    .stab          0 : { *(.stab) }
    .stabstr       0 : { *(.stabstr) }
    .stab.excl     0 : { *(.stab.excl) }
    .stab.exclstr  0 : { *(.stab.exclstr) }
    .stab.index    0 : { *(.stab.index) }
    .stab.indexstr 0 : { *(.stab.indexstr) }
    .comment       0 : { *(.comment) }
    /*
     * DWARF debug sections.
     * Symbols in the DWARF debugging sections are relative to the beginning
     * of the section so we begin them at 0.
     */
    /* DWARF 1 */
    .debug          0 : { *(.debug) }
    .line           0 : { *(.line) }
    /* GNU DWARF 1 extensions */
    .debug_srcinfo  0 : { *(.debug_srcinfo) }
    .debug_sfnames  0 : { *(.debug_sfnames) }
    /* DWARF 1.1 and DWARF 2 */
    .debug_aranges  0 : { *(.debug_aranges) }
    .debug_pubnames 0 : { *(.debug_pubnames) }
    /* DWARF 2 */
    .debug_info     0 : { *(.debug_info .gnu.linkonce.wi.*) }
    .debug_abbrev   0 : { *(.debug_abbrev) }
    .debug_line     0 : { *(.debug_line) }
    .debug_frame    0 : { *(.debug_frame) }
    .debug_str      0 : { *(.debug_str) }
    .debug_loc      0 : { *(.debug_loc) }
    .debug_macinfo  0 : { *(.debug_macinfo) }
    /* SGI/MIPS DWARF 2 extensions */
    .debug_weaknames 0 : { *(.debug_weaknames) }
    .debug_funcnames 0 : { *(.debug_funcnames) }
    .debug_typenames 0 : { *(.debug_typenames) }
    .debug_varnames  0 : { *(.debug_varnames) }
}

Dans cet exemple, la structure de configuration ne réside pas dans la zone RAM, mais dans CCMRAM, pour améliorer les performances. Je note également que les blocs de données des paramètres utilisateur sont les 2 dernières pages flash, chacune de 128 ko.

Initialisation et contrôle des copies


Le soin de ce qui se trouvera dans la RAM appartient au programmeur. Avant d'utiliser les données de cette zone pour la première fois, vous devez initialiser la zone. En flash, lors du chargement du programme dans le microcontrôleur, les données seront préenregistrées avec les valeurs initiales spécifiées dans le code du programme. Cela fera des copies non valides des blocs de paramètres utilisateur dans des pages distinctes s'ils se terminent par CRC32 (car aucun calcul de CRC32 n'est effectué. Votre code peut le faire. Aussi jusqu'à la première utilisation des paramètres de configuration).

Pour écrire un module pour travailler avec des blocs de configuration, vous devrez utiliser les variables du script LD. Les éléments suivants seront requis:

extern uint32_t user_cfg_data_flash_default_page_start;
extern uint32_t user_cfg_data_flash_page_1_start;
extern uint32_t user_cfg_data_flash_page_2_start;
extern uint32_t user_cfg_data_ram_page_start;

extern uint32_t user_cfg_data_flash_page_size;
extern uint32_t user_cfg_data_ram_page_size;

N'oubliez pas non plus que user_cfg_data_flash_page_size et user_cfg_data_ram_page_size peuvent être affectés comme valeurs normales. Mais user_cfg_data_flash_page_1_start et les autres variables stockant l'adresse doivent être spécifiés via &.

Source: https://habr.com/ru/post/undefined/


All Articles