Uno de los primeros problemas matemáticos realmente interesantes que encontré se formuló de la siguiente manera: "se cortaron dos celdas de la esquina opuesta de un tablero de ajedrez, ¿se puede cortar el resto en" dominó ": figuras de dos celdas que comparten un lado?" . Tiene una formulación muy simple, a diferencia del gran teorema de Fermat, tiene una solución simple, elegante, pero no obvia (si conoce la solución al problema, intente aplicarlo a la figura de la derecha).

En este artículo hablaré sobre varios algoritmos que pueden cubrir una figura celular arbitraria en un plano con dominó, si es posible, encuentre situaciones en las que esto sea imposible y considere el número de posibles inclinaciones de dominó.
Nota bene! El material en este artículo es una versión truncada de este jupyter-notebook , todas las imágenes y animaciones que ves en el artículo son generadas por el código de esta computadora portátil (aunque no habrá animaciones en la vista previa de github). Por cierto, las imágenes del encabezado también se generan usando python / matplotlib
Código de ayuda para renderizar, será útilimport matplotlib.pyplot as plt
from matplotlib import colors as mcolors
colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)
by_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])), name)
for name, color in colors.items())
names = [name for hsv, name in by_hsv if name not in {'black', 'k', 'w', 'white', 'crimson', 'royalblue', 'limegreen', 'yellow', 'orange'}]
import random
random.shuffle(names)
names = ['crimson', 'royalblue', 'limegreen', 'yellow', 'orange', *names]
names.append('red')
names.append('white')
names.append('black')
def fill_cell(i, j, color, ax):
ax.fill([i, i, i + 1, i + 1, i], [j, j + 1, j + 1, j, j], color=color)
def draw_filling(filling):
if filling is not None:
n = len(filling)
m = len(filling[0])
fig = plt.figure(figsize=(m * 0.75, n * 0.75))
ax = fig.add_axes([0, 0, 1, 1])
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
for name, spine in ax.spines.items():
spine.set_visible(False)
spine.set_visible(False)
for i, row in enumerate(filling):
i = n - i - 1
for j, cell in enumerate(row):
fill_cell(j, i, names[cell], ax)
for i in range(n + 1):
ax.plot([0, m], [i, i], color='black')
for i in range(m + 1):
ax.plot([i, i], [0, n], color='black')
plt.close(fig)
return fig
else:
return None
Antes de continuar, resolviendo el problema originalEs imposible hacer esto, y hay una explicación hermosa y simple para esto:
Programación dinámica por perfil
, , .
, - , . , ,
"" ,
" ?" . , , , .
: , , , , . — : - , , ( — , — ).
( ).
, .
, , — : ,


,


. , , , — . , , .
( , ). ( — , — ), , -
tiling = [
'........',
'........',
'........',
'........',
'........',
'........',
'........',
'........',
]
def count_tilings(tiling):
n = len(tiling)
m = len(tiling[0])
if ((n + 1) * m * 2 ** m) <= 10000000:
dp = [[[(0 if k != 0 or j != 0 or mask != 0 else 1) for mask in range(2 ** m)] for j in range(m)] for k in range(n + 1)]
for k in range(n):
for j in range(m):
for mask in range(2 ** m):
if k < n - 1 and tiling[k][j] == '.' and tiling[k + 1][j] == '.' and (mask & (1 << j)) == 0:
dp[k + ((j + 1) // m)][(j + 1) % m][mask + (1 << j)] += dp[k][j][mask]
if j < m - 1 and tiling[k][j] == '.' and tiling[k][j + 1] == '.' and (mask & (3 << j)) == 0:
dp[k + ((j + 1) // m)][(j + 1) % m][mask + (2 << j)] += dp[k][j][mask]
if ((1 << j) & mask) != 0 or tiling[k][j] != '.':
dp[k + ((j + 1) // m)][(j + 1) % m][(mask | (1 << j)) - (1 << j)] += dp[k][j][mask]
return dp
dp = count_tilings(tiling)
print(dp[8][0][0])
12988816
, . , — .
tiling_fib = [
'..',
'..',
'..',
'..',
'..',
'..',
'..',
'..'
]
dp = count_tilings(tiling_fib)
for i in range(8):
print(dp[i][0][0], end=' ')
1 1 2 3 5 8 13 21
, ,
tiling_no_corners_opposite = [
'.......#',
'........',
'........',
'........',
'........',
'........',
'........',
'#.......',
]
dp = count_tilings(tiling_no_corners_opposite)
print(dp[8][0][0])
0
. , ?
def cover_if_possible(tiling, dp=None):
if dp is None:
dp = count_tilings(tiling)
n = len(dp) - 1
m = len(dp[0])
if dp[n][0][0] == 0:
return None
result = [[-1 if tiling[i][j] == '#' else 0 for j in range(m)] for i in range(n)]
num = 0
k = n
j = 0
mask = 0
while k > 0 or j > 0:
prev_j = j - 1
prev_k = k
if prev_j == -1:
prev_j += m
prev_k -= 1
for prev_mask in range(2 ** m):
if prev_k < n - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k + 1][prev_j] == '.' and \
(prev_mask & (1 << prev_j)) == 0 and (prev_mask + (1 << prev_j)) == mask and dp[prev_k][prev_j][prev_mask] != 0:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k + 1][prev_j] = num
num += 1
break
elif prev_j < m - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k][prev_j + 1] == '.' and (prev_mask & (3 << prev_j)) == 0 and \
prev_mask + (2 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] != 0:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k][prev_j + 1] = num
num += 1
break
elif (((1 << prev_j) & prev_mask) != 0 or tiling[prev_k][prev_j] != '.') and \
(prev_mask | (1 << prev_j)) - (1 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] != 0:
mask = prev_mask
break
j = prev_j
k = prev_k
return result
filling = cover_if_possible(tiling)
draw_filling(filling)
,
tiling_random = [
'........',
'#.#.....',
'..#.....',
'........',
'........',
'........',
'........',
'...#....'
]
filling_random = cover_if_possible(tiling_random)
draw_filling(filling_random)

def maxmimum_cover(tiling):
n = len(tiling)
m = len(tiling[0])
if ((n + 1) * m * 2 ** m) <= 10000000:
dp = [[[(n * m if k != 0 or j != 0 or mask != 0 else 0) for mask in range(2 ** m)] for j in range(m)] for k in range(n + 1)]
for k in range(n):
for j in range(m):
for mask in range(2 ** m):
next_k, next_j = k + ((j + 1) // m), (j + 1) % m
if k < n - 1 and tiling[k][j] == '.' and tiling[k + 1][j] == '.' and (mask & (1 << j)) == 0:
dp[next_k][next_j][mask + (1 << j)] = min(dp[next_k][next_j][mask + (1 << j)], dp[k][j][mask])
if j < m - 1 and tiling[k][j] == '.' and tiling[k][j + 1] == '.' and (mask & (3 << j)) == 0:
dp[next_k][next_j][mask + (2 << j)] = min(dp[next_k][next_j][mask + (2 << j)], dp[k][j][mask])
if ((1 << j) & mask) != 0 or tiling[k][j] != '.':
dp[next_k][next_j][(mask | (1 << j)) - (1 << j)] = \
min(dp[next_k][next_j][(mask | (1 << j)) - (1 << j)], dp[k][j][mask])
else:
dp[next_k][next_j][(mask | (1 << j)) - (1 << j)] = \
min(dp[next_k][next_j][(mask | (1 << j)) - (1 << j)], dp[k][j][mask] + 1)
return dp
def cover_maximum_possible(tiling, dp=None):
if dp is None:
dp = maxmimum_cover(tiling)
n = len(dp) - 1
m = len(dp[0])
result = [[-1 if tiling[i][j] == '#' else -2 for j in range(m)] for i in range(n)]
num = 0
k = n
j = 0
mask = 0
while k > 0 or j > 0:
prev_j = j - 1
prev_k = k
if prev_j == -1:
prev_j += m
prev_k -= 1
for prev_mask in range(2 ** m):
if prev_k < n - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k + 1][prev_j] == '.' and \
(prev_mask & (1 << prev_j)) == 0 and (prev_mask + (1 << prev_j)) == mask and \
dp[prev_k][prev_j][prev_mask] == dp[k][j][mask]:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k + 1][prev_j] = num
num += 1
break
elif prev_j < m - 1 and tiling[prev_k][prev_j] == '.' and tiling[prev_k][prev_j + 1] == '.' and (prev_mask & (3 << prev_j)) == 0 and \
prev_mask + (2 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] == dp[k][j][mask]:
mask = prev_mask
result[prev_k][prev_j] = num
result[prev_k][prev_j + 1] = num
num += 1
break
elif (((1 << prev_j) & prev_mask) != 0 or tiling[prev_k][prev_j] != '.') and \
(prev_mask | (1 << prev_j)) - (1 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] == dp[k][j][mask]:
mask = prev_mask
break
elif ((1 << prev_j) & prev_mask) == 0 and tiling[prev_k][prev_j] == '.' and \
(prev_mask | (1 << prev_j)) - (1 << prev_j) == mask and dp[prev_k][prev_j][prev_mask] + 1 == dp[k][j][mask]:
mask = prev_mask
break
j = prev_j
k = prev_k
return result
tiling_custom=[
'...####',
'....###',
'......#',
'#.#....',
'#......',
'##.....',
'###...#',
]
filling = cover_maximum_possible(tiling_custom)
draw_filling(filling)
! , . , . , , , , . , , , .
- . , — , , . , — . , , — , — , — . , , , . , . , , .
def check_valid(i, j, n, m, tiling):
return 0 <= i and i < n and 0 <= j and j < m and tiling[i][j] != '#'
def find_augmenting_path(x, y, n, m, visited, matched, tiling):
if not check_valid(x, y, n, m, tiling):
return False
if (x, y) in visited:
return False
visited.add((x, y))
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
if not check_valid(x + dx, y + dy, n, m, tiling):
continue
if (x + dx, y + dy) not in matched or find_augmenting_path(*matched[(x + dx , y + dy)], n, m, visited, matched, tiling):
matched[(x + dx, y + dy)] = (x, y)
return True
return False
def convert_match(matched, tiling, n, m):
result = [[-1 if tiling[i][j] == '#' else -2 for j in range(m)] for i in range(n)]
num = 0
for x, y in matched:
_x, _y = matched[(x, y)]
result[x][y] = num
result[_x][_y] = num
num += 1
return result
def match_with_flow(tiling):
result_slices = []
n = len(tiling)
m = len(tiling[0])
matched = dict()
rows = list(range(n))
columns = list(range(m))
random.shuffle(rows)
random.shuffle(columns)
result_slices.append(convert_match(matched, tiling, n, m))
for i in rows:
for j in columns:
if (i + j) % 2 == 1:
continue
visited = set()
if find_augmenting_path(i, j, n, m, visited, matched, tiling):
result_slices.append(convert_match(matched, tiling, n, m))
return result_slices
sequencial_match = match_with_flow(tiling_custom)
( ) " ". , , , . , , , , , .
UPD. - . , :
, .
! 5 .
. , . , . : , , , . . 4 , . 5 , , ( 5 , )
Pintar dominó en 5 coloresdef color_5(filling):
result = [[i for i in row] for row in filling]
domino_tiles = [[] for i in range(max(map(max, filling)) + 1)]
domino_neighbours = [set() for i in range(max(map(max, filling)) + 1)]
degree = [0 for i in range(max(map(max, filling)) + 1)]
n = len(filling)
m = len(filling[0])
for i, row in enumerate(filling):
for j, num in enumerate(row):
if num >= 0:
domino_tiles[num].append((i, j))
for i, tiles in enumerate(domino_tiles):
for x, y in tiles:
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1), (-1, -1), (-1, 1), (1, -1), (1, 1)]:
a, b = x + dx, y + dy
if 0 <= a and a < n and 0 <= b and b < m and filling[a][b] >= 0 and filling[a][b] != i \
and filling[a][b] not in domino_neighbours[i]:
domino_neighbours[i].add(filling[a][b])
degree[i] += 1
active_degrees = [set() for i in range(max(degree) + 1)]
for i, deg in enumerate(degree):
active_degrees[deg].add(i)
reversed_order = []
for step in range(len(domino_tiles)):
min_degree = min([i for i, dominoes in enumerate(active_degrees) if len(dominoes) > 0])
domino = active_degrees[min_degree].pop()
reversed_order.append(domino)
for other in domino_neighbours[domino]:
if other in active_degrees[degree[other]]:
active_degrees[degree[other]].remove(other)
degree[other] -= 1
active_degrees[degree[other]].add(other)
colors = [-1 for domino in domino_tiles]
slices = [draw_filling(result)]
for domino in reversed(reversed_order):
used_colors = [colors[other] for other in domino_neighbours[domino] if colors[other] != -1]
domino_color = len(used_colors)
for i, color in enumerate(sorted(set(used_colors))):
if i != color:
domino_color = i
break
if domino_color < 5:
colors[domino] = domino_color
for x, y in domino_tiles[domino]:
result[x][y] = domino_color
slices.append(draw_filling(result))
continue
c = 0
other = [other for other in domino_neighbours[domino] if colors[other] == c]
visited = set([other])
q = Queue()
q.put(other)
domino_was_reached = False
while not q.empty():
cur = q.get()
for other in domino_neighbours[cur]:
if other == domino:
domino_was_reached = True
break
if color[other] == c or color[other] == c + 1 and other not in visited:
visited.add(other)
q.put(other)
if not domino_was_reached:
for other in visited:
color[other] = color[other] ^ 1
for x, y in domino_tiles[other]:
result[x][y] = color[other]
color[domino] = c
for x, y in domino_tiles[domino]:
result[x][y] = c
slices.append(draw_filling(result))
continue
c = 2
other = [other for other in domino_neighbours[domino] if colors[other] == c]
visited = set([other])
q = Queue()
q.put(other)
domino_was_reached = False
while not q.empty():
cur = q.get()
for other in domino_neighbours[cur]:
if other == domino:
domino_was_reached = True
break
if color[other] == c or color[other] == c + 1 and other not in visited:
visited.add(other)
q.put(other)
for other in visited:
color[other] = color[other] ^ 1
for x, y in domino_tiles[other]:
result[x][y] = color[other]
color[domino] = c
for x, y in domino_tiles[domino]:
result[x][y] = c
slices.append(draw_filling(result))
return result, slices
Si va a utilizar este código, tenga en cuenta que cada paso se dibuja allí; esto fue necesario para la animación, que ralentiza enormemente el algoritmo. Si solo necesita la pintura final, elimine todo el código que utiliza la variable de sectores.
Bueno, finalmente, pruebe uno de los ejemplos que fueron un poco antes.