Recursive descent works ideally when you can make a decision about a piece of code to be parsed using the current context and token.
Expressions spoil the picture : postfix, infix and others. Problem: you cannot understand what type of expression you are processing until you parse its first half. Often the priority of the operation and its associativity are also important for you so that the constructed AST has the correct structure.
In this article, we will write a parser for the Go dialect, the features of which we will consider a little later. As you can see, the Pratt algorithm solves most of our problems.

Terminology
. , , - .
: , (, ).
: , .
/expression: , . : .
Statement: , . : .
/precedence: .
: , . : x++
.
: , . : ++x
.
: , . : x+y
.
/left-associative: .
/right-associative: .
non-associative: .
: , AST .
AST: , .
/: , .
: .
: .
: ().
: , .
: , .
Go ++ and ++ Go
In order not to waste time on lexical analysis , we will take everything we need from the standard library:
, , :
type Token struct {
kind token.Token
value string
}
scanner.Scanner lexer
, :
Peek()
β ,Consume()
β ,
go/ast, , .
Go right-associative , .
Go β statement, expression. . , .
. , , .
. , README : github.com/richardjennings/prattparser.
, .
type exprNode interface {
expr()
}
type nameExpr struct {
Value string
}
type prefixExpr struct {
Op token.Token
Arg exprNode
}
func (e *nameExpr) expr() {}
func (e *prefixExpr) expr() {}
, parseExpr()
, :
func (p *exprParser) parseExpr() exprNode {
tok := p.lexer.Consume()
switch tok.kind {
case token.IDENT:
return p.parseName(tok)
case token.ADD, token.SUB:
return p.parsePrefixExpr(tok)
case token.LPAREN:
return p.parseParenExpr(tok)
}
}
func (p *exprParser) parseName(tok Token) exprNode {
return &nameExpr{Value: tok.value}
}
func (p *exprParser) parsePrefixExpr(tok Token) exprNode {
arg := p.parseExpr()
return &prefixExpr{Op: tok.kind, Arg: arg}
}
- .
, . , -, parsePrefixExpr()
, map
, . , , map
.
, prefixParselet
:
type prefixParselet func(Token) exprNode
map[token.Token]prefixParselet
. :
func newExprParser() *exprParser {
p := &exprParser{
prefixParselets: make(map[token.Token]prefixParselet),
}
prefixExpr := func(kinds ...token.Token) {
for _, kind := range kinds {
p.prefixParselets[kind] = p.parsePrefixExpr
}
}
p.prefixParselets[token.IDENT] = p.parseName
prefixExpr(token.ADD, token.SUB)
return p
}
prefixExpr()
. , (. ).
func (p *exprParser) parseExpr() exprNode {
tok := p.lexer.consume()
prefix, ok := p.prefixParselets[tok.kind]
if !ok {
}
return prefix(tok)
}
, x+y
.
nameExpr{Value:"x"}
, +
. , .
infixParselet
, prefixParselet
, Expr
, . x+y
x
.
type infixParselet func(left exprNode, tok Token) exprNode
map
. , .
, +
-
binaryExpr
:
func (p *exprParser) parseBinaryExpr(left exprNode, tok token) exprNode {
right := p.parseExpr()
return &binaryExpr{Op: tok.kind, Left: left, Right: right}
}
parseExpr()
:
func (p *exprParser) parseExpr() exprNode {
tok := p.lexer.Consume()
prefix, ok := p.prefixParselets[tok.kind]
if !ok {
}
left := prefix(tok)
tok = p.lexer.Peek()
infix, ok := p.infixParselets[tok.kind]
if !ok {
return left
}
p.lexer.Consume()
return infix(left, tok)
}
:
- -:
x-y-z
=> x-(y-z)
- :
x*y+z
=> x*(y+z)
, .
{token.Token => precedence}
. , , :
p.prefixPrecedenceTab = map[token.Token]int{
token.ADD: 4,
token.SUB: 4,
}
p.infixPrecedenceTab = map[token.Token]int{
token.ADD: 2,
token.SUB: 2,
token.MUL: 3,
token.QUO: 3,
}
parseExpr()
precedence
:
func (p *exprParser) parseExpr(precedence int) exprNode {
tok := p.lexer.Consume()
prefix, ok := p.prefixParselets[tok.kind]
if !ok {
}
left := prefix(tok)
for precedence < p.infixPrecedenceTab[p.lexer.Peek().kind] {
tok := p.lexer.Consume()
infix := p.infixParselets[tok.kind]
left = infix(left, tok)
}
return left
}
, , , AST.
precedence
() parseExpr()
:
func (p *exprParser) parseBinaryExpr(left exprNode, tok Token) exprNode {
right := p.parseExpr(p.infixPrecedenceTab[tok.kind])
return &binaryExpr{Op: tok.kind, Left: left, Right: right}
}
parseBinaryExpr()
-. - , 1 :
func (p *exprParser) rparseBinaryExpr(left exprNode, tok Token) exprNode {
right := p.parseExpr(p.infixPrecedenceTab[tok.kind] - 1)
return &binaryExpr{Op: tok.kind, Left: left, Right: right}
}
, <<
-, rparseBinaryExpr()
.
β infixParselet
, '('
parseExpr(0)
, ')'
.
() β prefixParselet
, '('
parseExpr(0)
, ')'
.
func (p *exprParser) parseParenExpr(tok Token) exprNode {
x := p.parseExpr(0)
p.expect(token.RPAREN)
return x
}
β infixParselet
:
func (p *exprParser) parsePostfixExpr(left exprNode, tok Token) exprNode {
return &postfixExpr{Op: tok.kind, Arg: left}
}
, , .
, , , helper- precedence
:
prefixExpr := func(precedence int, kinds ...token.Token) {
for _, kind := range kinds {
p.prefixParselets[kind] = p.parsePrefixExpr
p.prefixPrecedenceTab[kind] = precedence
}
}
:
addPrefixParselet(token.LPAREN, 0, p.parseParenExpr)
addPrefixParselet(token.IDENT, 0, p.parseNameExpr)
leftAssocBinaryExpr(1, token.LOR)
leftAssocBinaryExpr(2, token.LAND)
leftAssocBinaryExpr(3,
token.EQL,
token.NEQ,
)
rightAssocBinaryExpr(4,
token.SHL,
)
leftAssocBinaryExpr(4,
token.ADD,
token.SUB,
token.SHR,
)
leftAssocBinaryExpr(5,
token.MUL,
token.QUO,
token.REM,
)
prefixExpr(6,
token.ADD,
token.SUB,
token.INC,
token.DEC,
)
postfixExpr(7,
token.INC,
token.DEC,
)
addInfixParselet(token.LPAREN, 8, p.parseCallExpr)
, , PrecAdd=3
, PrecMult=4
.
map
.
, , newExprParser
. prefixParselet
infixParslet
, β *exprParser
.
, , . , : , β .
Pratt Parsers: Expression Parsing Made Easy (Bob Nystrom). , , , , ", ".
, .
github.com/quasilyte/pratt-parsers-go.
: github.com/richardjennings/prattparser.
: