
While dozens and even hundreds of proven architectures of artificial neural networks (ANNs) are trained in the world of object recognition, warming the planet with powerful video cards and creating a βpanaceaβ for all tasks of computer vision, we are firmly following the research path in Smart Engines, offering new effective ANN architectures to solve specific problems. Today we will talk about HafNet - a new way to search for vanishing points on images.
Hough transformation and its quick implementation
. , , , , . ( ). () : , , , .. , , , , , .
(xi,yi). , yi=xia+b a b. b=-xia+yi ab, , (xi,yi) . : , , , . : , . ( β , ).
, , , β .
, . .

, , : β O(n3), n β .
() β , , () . O(n2 log(n)), . , , , [5]. , : : Β« Β» ( H1), Β« Β» ( H2), Β« Β» ( H3) Β« Β» ( H4). , H12 H34 , .
( , ). , , . .
. , , - , : ( , , ), β . , . . , - . , H12 , . , , H34 , . , , H12 , , , . ( , H12 ).

( ). , ( β ).
, , : ? , β¦ , !
HoughNet
, , - (, β , β ). «» ( , ). «» . «» , , ?
, ( HoughNet), , - . , , β , , . , ( [1]).
: «» , «» . .
. MIDV-500 [6]. , . 50 . ( , 30 ) , β .
, , ICDAR 2011 dewarping contest dataset ( 100 - , ) .

«» ( ), state-of-the-art [7] [8].
[1] Sheshkus A. et al. HoughNet: neural network architecture for vanishing points detection // 2019 International Conference on Document Analysis and Recognition (ICDAR). β 2020. doi: 10.1109/ICDAR.2019.00140.
[2] . ., . ., . . // . β 2014. β . 64. β β. 3. β . 25-34.
[3] .. : . β¦ . . .-. . β ., 2019. β 24 .
[4] [ ]: . . β : https://ru.wikipedia.org/wiki/_/ ( : 13.03.2020).
[5] Nikolaev D. P., Karpenko S. M., Nikolaev I. P., Nikolayev P. P. Hough Transform: Underestimated Tool in the Computer Vision Field // 22st European Conference on Modelling and Simulation, ECMS 2008. β Nicosia, Cyprys, 2008. β P. 238β243.
[6] Arlazarov V. V. et al. MIDV-500: a dataset for identity document analysis and recognition on mobile devices in video stream // . β 2019. β . 43. β β. 5.
[7] Y. Takezawa, M. Hasegawa, and S. Tabbone, βCameracaptured document image perspective distortion correction using vanishing point detection based on radon transform,β in Pattern Recognition (ICPR), 2016 23rd International Conference on. IEEE, 2016, pp. 3968β3974.
[8] Y. Takezawa, M. Hasegawa, and S. Tabbone, βRobust perspective rectification of camera-captured document images,β in Document Analysis and Recognition (ICDAR), 2017 14th IAPR International Conference on, vol. 6. IEEE, 2017, pp. 27β32.