Machine learning in R language using mlr3 package


Source: https://mlr3book.mlr-org.com/


Hello, Habr!

In this post, we will consider the most thoughtful approach to machine learning in the R language today - the mlr3 package and the ecosystem around it. This approach is based on β€œnormal” OOP using R6 classes and on representing all operations with data and models in the form of a computation graph. This allows you to create streamlined and flexible pipelines for machine learning tasks, but at first it may seem complicated and confusing. Below we will try to bring some clarity and motivate to use mlr3 in your projects.

Content:


  1. A bit of history and comparison with competing solutions
  2. Technical details: R6 classes and data.table package
  3. The main components of ML pipline in mlr3
  4. Setting Hyperparameters
  5. Mlr3 ecosystem overview
  6. Pipes and graph of calculations

1.


caret β€” ,

caret R ( CRAN 2007 ). 2013 Applied Predictive Modeling, .


:


  • ( - );
  • (-), , , ;
  • , caret- - ;
  • β€” , xgboost nrounds, max_depth, eta, gamma, colsample_bytree, min_child_weight subsample.

:


  • β€” , . ;
  • : , . recipes , ;
  • - (nested resampling), caretEnsemble.

tidyverse strikes back

tidymodels, recipes ( «» , ), rsample ( ) tune ( ).


:


  • «» , ;
  • , embed textrecipes;
  • , . ( tune);
  • workflows «» .

:


  • , tune . «» , , apply/map-;
  • . , 200 ;
  • - .

mlr3 vs

mlr3 mlr , caret tidymodels. mlr , mlr3.


:


  • R6-, data.table;
  • . , ;
  • API , learner β€” ;
  • .

:


  • : , ( ), ;
  • .

2. : R6- data.table


mlr3 «» , R6-. R6- , . Advanced R, , .


R6- R6Class():


library(R6)

Accumulator <- R6Class("Accumulator", list(
  sum = 0,
  add = function(x = 1) {
    self$sum <- self$sum + x 
    invisible(self)
  })
)

β€” "Accumulator".


new(), (, , ) :


x <- Accumulator$new() 

, , :


x$add(4) 
x$sum
#> [1] 4

R6- :


y1 <- Accumulator$new() 
y2 <- y1

y1$add(10)
c(y1 = y1$sum, y2 = y2$sum)
#> y1 y2 
#> 10 10

clone() ( clone(deep = TRUE) ):


y1 <- Accumulator$new() 
y2 <- y1$clone()

y1$add(10)
c(y1 = y1$sum, y2 = y2$sum)
#> y1 y2 
#> 10  0

, R6 mlr3.


data.table ( , data.table data.table: R). - data.table, := . , , 2 , . , , .


3. ML- mlr3



: https://mlr3book.mlr-org.com/


mlr3 :


library(mlr3)

# 
task <- TaskClassif$new(id = "iris", 
                        backend = iris, 
                        target = "Species")
task
# <TaskClassif:iris> (150 x 5)
# * Target: Species
# * Properties: multiclass
# * Features (4):
#   - dbl (4): Petal.Length, Petal.Width, Sepal.Length, Sepal.Width

# 
# learner_rpart <- mlr_learners$get("classif.rpart")
learner_rpart <- lrn("classif.rpart", 
                     predict_type = "prob", 
                     minsplit = 50)
learner_rpart
# <LearnerClassifRpart:classif.rpart>
# * Model: -
# * Parameters: xval=0, minsplit=50
# * Packages: rpart
# * Predict Type: prob
# * Feature types: logical, integer, numeric, factor, ordered
# * Properties: importance, missings, multiclass, selected_features, twoclass, weights

#  
learner_rpart$param_set
# ParamSet: 
#                id    class lower upper levels     default value
# 1:       minsplit ParamInt     1   Inf                 20    50
# 2:      minbucket ParamInt     1   Inf        <NoDefault>      
# 3:             cp ParamDbl     0     1               0.01      
# 4:     maxcompete ParamInt     0   Inf                  4      
# 5:   maxsurrogate ParamInt     0   Inf                  5      
# 6:       maxdepth ParamInt     1    30                 30      
# 7:   usesurrogate ParamInt     0     2                  2      
# 8: surrogatestyle ParamInt     0     1                  0      
# 9:           xval ParamInt     0   Inf                 10     0

# 
learner_rpart$train(task, row_ids = 1:120) 
learner_rpart$model
# n= 120 
# 
# node), split, n, loss, yval, (yprob)
#       * denotes terminal node
# 
# 1) root 120 70 setosa (0.41666667 0.41666667 0.16666667)  
#   2) Petal.Length< 2.45 50  0 setosa (1.00000000 0.00000000 0.00000000) *
#   3) Petal.Length>=2.45 70 20 versicolor (0.00000000 0.71428571 0.28571429)  
#     6) Petal.Length< 4.95 49  1 versicolor (0.00000000 0.97959184 0.02040816) *
#     7) Petal.Length>=4.95 21  2 virginica (0.00000000 0.09523810 0.90476190) *

: (task) (learner).


(TaskClassif , TaskRegr ..) new(). id, backend target; positive. : mlr_tasks$get("iris") tsk("iris").


mlr_learners get() train(), task , . : lrn("classif.rpart", predict_type = "prob", minsplit = 50). (predict_type = "prob") (minsplit = 50). : learner_rpart$predict_type <- "prob", learner_rpart$param_set$values$minsplit = 50.


predict_newdata():


#    
preds <- learner_rpart$predict_newdata(newdata = iris[121:150, ])
preds
# <PredictionClassif> for 30 observations:
#     row_id     truth   response prob.setosa prob.versicolor prob.virginica
#          1 virginica  virginica           0       0.0952381     0.90476190
#          2 virginica versicolor           0       0.9795918     0.02040816
#          3 virginica  virginica           0       0.0952381     0.90476190
# ---                                                                       
#         28 virginica  virginica           0       0.0952381     0.90476190
#         29 virginica  virginica           0       0.0952381     0.90476190
#         30 virginica  virginica           0       0.0952381     0.90476190

- 5 :


cv10 <- rsmp("cv", folds = 5)

resample_results <- resample(task, learner_rpart, cv10)
# INFO  [09:37:05.993] Applying learner 'classif.rpart' on task 'iris' (iter 1/5) 
# INFO  [09:37:06.018] Applying learner 'classif.rpart' on task 'iris' (iter 2/5) 
# INFO  [09:37:06.042] Applying learner 'classif.rpart' on task 'iris' (iter 3/5) 
# INFO  [09:37:06.074] Applying learner 'classif.rpart' on task 'iris' (iter 4/5) 
# INFO  [09:37:06.098] Applying learner 'classif.rpart' on task 'iris' (iter 5/5) 

resample_results
# <ResampleResult> of 5 iterations
# * Task: iris
# * Learner: classif.rpart
# * Warnings: 0 in 0 iterations
# * Errors: 0 in 0 iterations

#    (-):
as.data.table(mlr_resamplings)
#            key        params iters
# 1:   bootstrap repeats,ratio    30
# 2:      custom                   0
# 3:          cv         folds    10
# 4:     holdout         ratio     1
# 5: repeated_cv repeats,folds   100
# 6: subsampling repeats,ratio    30

. score() resample_results, β€” accuracy "classif.acc" classification error "classif.ce". , get(): mlr_measures$get("classif.ce"). msrs():


resample_results$score(msrs(c("classif.acc", "classif.ce")))[, 5:10]
#   
#        resampling resampling_id iteration prediction classif.acc classif.ce
# 1: <ResamplingCV>            cv         1     <list>   0.8666667 0.13333333
# 2: <ResamplingCV>            cv         2     <list>   0.9666667 0.03333333
# 3: <ResamplingCV>            cv         3     <list>   0.9333333 0.06666667
# 4: <ResamplingCV>            cv         4     <list>   0.9666667 0.03333333
# 5: <ResamplingCV>            cv         5     <list>   0.9333333 0.06666667

4.


β€” . , .


. paradox:


library("paradox")
searchspace <- ParamSet$new(list(
  ParamDbl$new("cp", lower = 0.001, upper = 0.1),
  ParamInt$new("minsplit", lower = 1, upper = 10)
))
searchspace
# ParamSet: 
#          id    class lower upper levels     default value
# 1:       cp ParamDbl 0.001   0.1        <NoDefault>      
# 2: minsplit ParamInt 1.000  10.0        <NoDefault> 

ParamSet, cp minsplit; rpart .


, searchspace . tune() Tuner. . resolution, , param_resolutions, . , , .


generate_design_grid() , :


generate_design_grid(searchspace, 
                     param_resolutions = c("cp" = 2, "minsplit" = 3))
# <Design> with 6 rows:
#       cp minsplit
# 1: 0.001        1
# 2: 0.001        5
# 3: 0.001       10
# 4: 0.100        1
# 5: 0.100        5
# 6: 0.100       10

: generate_design_random() generate_design_lhs() .


, . Terminator-, , ( ), . mlr3tuning:


library("mlr3tuning")

evals20 <- term("evals", n_evals = 20)
evals20
# <TerminatorEvals>
# * Parameters: n_evals=20

#  
as.data.table(mlr_terminators)
#             key
# 1:   clock_time
# 2:        combo
# 3:        evals
# 4:   model_time
# 5:         none
# 6: perf_reached
# 7:   stagnation

TuningInstance:


tuning_instance <- TuningInstance$new(
  task = TaskClassif$new(id = "iris", 
                        backend = iris, 
                        target = "Species"),
  learner = lrn("classif.rpart", 
                predict_type = "prob"),
  resampling = rsmp("cv", folds = 5),
  measures = msr("classif.ce"),
  param_set = ParamSet$new(
    list(ParamDbl$new("cp", lower = 0.001, upper = 0.1),
         ParamInt$new("minsplit", lower = 1, upper = 10)
         )
    ),
  terminator = term("evals", n_evals = 20)
)

tuning_instance
# <TuningInstance>
# * State:  Not tuned
# * Task: <TaskClassif:iris>
# * Learner: <LearnerClassifRpart:classif.rpart>
# * Measures: classif.ce
# * Resampling: <ResamplingCV>
# * Terminator: <TerminatorEvals>
# * bm_args: list()
# * n_evals: 0
# ParamSet: 
#          id    class lower upper levels     default value
# 1:       cp ParamDbl 0.001   0.1        <NoDefault>      
# 2: minsplit ParamInt 1.000  10.0        <NoDefault>  

β€” Tuner, :


tuner <- tnr("grid_search", 
             resolution = 5, 
             batch_size = 2)

#  
# as.data.table(mlr_tuners)
#              key
# 1: design_points
# 2:         gensa
# 3:   grid_search
# 4: random_search

resolution = 5, 25 . 20 , terminator = term("evals", n_evals = 20). batch_size β€” , . mlr3 β€” , .


tnr("design_points"): , ( β€” , mlr3 ).


, :


result <- tuner$tune(tuning_instance)
result
# NULL

, result . , tuner$tune() tuning_instance:


tuning_instance$result
# $tune_x
# $tune_x$cp
# [1] 0.001
# 
# $tune_x$minsplit
# [1] 5
# 
# 
# $params
# $params$xval
# [1] 0
# 
# $params$cp
# [1] 0.001
# 
# $params$minsplit
# [1] 5
# 
# 
# $perf
# classif.ce 
#       0.04 

result <- tuning_instance$archive(unnest = "params")
result[order(classif.ce), c("cp", "minsplit", "classif.ce")]
#         cp minsplit classif.ce
#  1: 0.00100        5 0.04000000
#  2: 0.00100        3 0.04000000
#  3: 0.00100        8 0.04000000
#  4: 0.00100        1 0.04000000
#  5: 0.00100       10 0.04666667
#  6: 0.02575       10 0.06000000
#  7: 0.07525        5 0.06000000
#  8: 0.02575        8 0.06000000
#  9: 0.02575        3 0.06000000
# 10: 0.05050        1 0.06000000
# 11: 0.07525        3 0.06000000
# 12: 0.07525        1 0.06000000
# 13: 0.05050        3 0.06000000
# 14: 0.02575        5 0.06000000
# 15: 0.05050        5 0.06000000
# 16: 0.05050        8 0.06000000
# 17: 0.10000        3 0.06000000
# 18: 0.10000        8 0.06000000
# 19: 0.05050       10 0.06000000
# 20: 0.10000        1 0.06000000

library(ggplot2)
ggplot(result, 
       aes(x = cp, y = classif.ce, color = as.factor(minsplit))) +
  geom_line() + 
  geom_point(size = 3)


, tune():


  1. Tuner ( batch_size);
  2. Learner Task . ResampleResult ( BenchmarkResult);
  3. Terminator , . , 1, , ;
  4. ;
  5. , ( , , msr("classif.ce", aggregator = "median").

tuning_instance$bmr, BenchmarkResult, score() as.data.table(tuning_instance$bmr). , , ResampleResult tuning_instance$archive():


tuning_instance$archive()[1, resample_result][[1]]$score()[, 4:9]
#       learner_id     resampling resampling_id iteration prediction classif.ce
# 1: classif.rpart <ResamplingCV>            cv         1     <list> 0.06666667
# 2: classif.rpart <ResamplingCV>            cv         2     <list> 0.16666667
# 3: classif.rpart <ResamplingCV>            cv         3     <list> 0.03333333
# 4: classif.rpart <ResamplingCV>            cv         4     <list> 0.03333333
# 5: classif.rpart <ResamplingCV>            cv         5     <list> 0.00000000

, :


res <- tuning_instance$archive(unnest = "params")
res[, ce_resemples := lapply(resample_result, function(x) x$score()[, classif.ce])]
ce_resemples <- res[, .(ce_resemples = unlist(ce_resemples)), by = nr]
res[ce_resemples, on = "nr"]

5. mlr3


: mlr3, mlr3tuning paradox. , - mlr3verse:


# install.packages("mlr3verse")
library(mlr3verse)
## Loading required package: mlr3
## Loading required package: mlr3db
## Loading required package: mlr3filters
## Loading required package: mlr3learners
## Loading required package: mlr3pipelines
## Loading required package: mlr3tuning
## Loading required package: mlr3viz
## Loading required package: paradox

  • mlr3db dbplyr data.table.
  • mlr3filters , ( ).
  • mlr3learners (regr.glmnet, regr.kknn, regr.km, regr.lm, regr.ranger, regr.svm, regr.xgboost) (classif.glmnet, classif.kknn, classif.lda, classif.log_reg, classif.multinom, classif.naive_bayes, classif.qda, classif.ranger, classif.svm, classif.xgboost). .
  • mlr3pipelines (pipelines), . , , CRAN, : remotes::install_github("https://github.com/mlr-org/mlr3pipelines").
  • mlr3tuning .
  • mlr3viz , .
  • mlr3measures β€” ~40 . mlr3verse , .

, .


6.


(pipelines) , , .


β€” , , β€” . PipeOpLearner(), β€” PipeOpFilter(), β€” PipeOp(). ( po()) :


pca <- po("pca")
filter <- po("filter", 
             filter = mlr3filters::flt("variance"), 
             filter.frac = 0.5)
learner_po <- po("learner", 
                 learner = lrn("classif.rpart"))

%>>%:


graph <- pca %>>% filter %>>% learner_po
graph$plot()


. , :


gr <- Graph$new()$
  add_pipeop(mlr_pipeops$get("copy", outnum = 2))$
  add_pipeop(mlr_pipeops$get("scale"))$
  add_pipeop(mlr_pipeops$get("pca"))$
  add_pipeop(mlr_pipeops$get("featureunion", innum = 2))

gr$
  add_edge("copy", "scale", src_channel = 1)$        
  add_edge("copy", "pca", src_channel = "output2")$  
  add_edge("scale", "featureunion", dst_channel = 1)$
  add_edge("pca", "featureunion", dst_channel = 2)

gr$plot(html = FALSE)


, (po("learner", learner = lrn("classif.rpart"))). , :


glrn <- GraphLearner$new(graph)
glrn 
# <GraphLearner:pca.variance.classif.rpart>
# * Model: -
# * Parameters: variance.filter.frac=0.5, variance.na.rm=TRUE, classif.rpart.xval=0
# * Packages: -
# * Predict Type: response
# * Feature types: logical, integer, numeric, character, factor, ordered, POSIXct
# * Properties: importance, missings, multiclass, oob_error, selected_features, twoclass,
#   weights

GraphLearner Learner. , Learner-, :


resample(tsk("iris"), glrn, rsmp("cv"))
# INFO  [17:17:00.358] Applying learner 'pca.variance.classif.rpart' on task 'iris' (iter 1/10) 
# INFO  [17:17:00.615] Applying learner 'pca.variance.classif.rpart' on task 'iris' (iter 2/10) 
# INFO  [17:17:00.881] Applying learner 'pca.variance.classif.rpart' on task 'iris' (iter 3/10) 
# INFO  [17:17:01.087] Applying learner 'pca.variance.classif.rpart' on task 'iris' (iter 4/10) 
# INFO  [17:17:01.303] Applying learner 'pca.variance.classif.rpart' on task 'iris' (iter 5/10) 
# INFO  [17:17:01.518] Applying learner 'pca.variance.classif.rpart' on task 'iris' (iter 6/10) 
# INFO  [17:17:01.716] Applying learner 'pca.variance.classif.rpart' on task 'iris' (iter 7/10) 
# INFO  [17:17:01.927] Applying learner 'pca.variance.classif.rpart' on task 'iris' (iter 8/10) 
# INFO  [17:17:02.129] Applying learner 'pca.variance.classif.rpart' on task 'iris' (iter 9/10) 
# INFO  [17:17:02.337] Applying learner 'pca.variance.classif.rpart' on task 'iris' (iter 10/10) 
# <ResampleResult> of 10 iterations
# * Task: iris
# * Learner: pca.variance.classif.rpart
# * Warnings: 0 in 0 iterations
# * Errors: 0 in 0 iterations

, issue How to deal with different preprocessing steps as hyperparameters:


gr <- pipeline_branch(list(pca = po("pca"), nothing = po("nop")))
gr$plot()


caret tidymodels !


, mlr3. mlr3 book .


All Articles