
Einführung
. . . , , . ? ? , . : , , , . , , . , , , , . Johns Hopkins University.

COVID-19 — , SARS-CoV-2 (2019-nCoV). — , /, .
, , .
: |
, : , , , , , ( , ), . , , , , . , . , 2.4. , , , , — . , ( 15% ), , , ; .
, , , . . :
- ,
- .
:
- , .
- , ( ). , .
- , , . .
- - ( ) , .
— , - . COVID-19 1 14 .
. — . . , 0.35 ( , 2.4 , 1 14) 0.135 . , . .
Python
: . , , (Total cases), (New cases) (Infected), , ( - , ).
import numpy as np
import matplotlib.pyplot as plt
COUNTRY = "Italy"
DAYS_OF_SIMULATION = 366
COEF_BASE = 0.35
COEF_QUARANTINE = 0.135
DAY_QUARANTINE = 74
INCUBATION_PERIOD = 15
np.random.seed(0)
def get_coef(day):
return COEF_BASE if day < DAY_QUARANTINE else COEF_QUARANTINE
if __name__ == "__main__":
days = np.arange(1, DAYS_OF_SIMULATION)
infected = np.random.randint(1, INCUBATION_PERIOD, 1)
infected_lst = []
new_cases_lst = []
new_cases_total_lst = []
for day in days:
coef = get_coef(day)
new_cases_idx = np.argwhere(infected == day).flatten()
new_cases_count = new_cases_idx.size
infected = np.delete(infected, new_cases_idx)
new_infected_count = np.random.poisson(coef, infected.size).sum()
new_infected = np.random.randint(1, INCUBATION_PERIOD, new_infected_count) + day
infected = np.concatenate((infected, new_infected))
infected_lst.append(infected.size)
new_cases_lst.append(new_cases_count)
new_cases_total_lst.append(sum(new_cases_lst))
print(day, infected.size)
plt.figure(figsize=(16, 8))
plt.subplot(311)
plt.title(f"COVID-19 pandemic in {COUNTRY}")
plt.plot(days, new_cases_total_lst)
plt.grid(True)
plt.legend(["Total cases"], loc='upper left')
plt.subplot(312)
plt.bar(days, new_cases_lst, alpha=0.7, color='y')
plt.grid(True)
plt.legend(["New cases"], loc='upper left')
plt.subplot(313)
plt.plot(days, infected_lst, color='r')
plt.grid(True)
plt.legend(["Infected"], loc='upper left')
plt.show()
.
DAYS_OF_SIMULATION - ,
COEF_BASE - ,
COEF_QUARANTINE - ,
DAY_QUARANTINE - ,
INCUBATION_PERIOD - ( ).
, , .
, :
COUNTRY = "Italy"
DAYS_OF_SIMULATION = 366
COEF_BASE = 0.35
COEF_QUARANTINE = 0.135
DAY_QUARANTINE = 74
INCUBATION_PERIOD = 15

. - , ( 74- ), - , , 14 . , 300000, 250- , 180 ( , , 6 ). , 40000.
:
— 300000
— 6
— 40000
, , :
COUNTRY = "USA"
DAYS_OF_SIMULATION = 366
COEF_BASE = 0.35
COEF_QUARANTINE = 0.135
DAY_QUARANTINE = 83
INCUBATION_PERIOD = 15

. , , ( DAY_QUARANTINE - ), , COEF_QUARANTINE . .
:
— 1700000
— 6
— 250000
— , . , , . "" . :
- — .
- 1 — .
- 2 — .
.
I.
COUNTRY = "Russia"
DAYS_OF_SIMULATION = 366
COEF_BASE = 0.35
COEF_QUARANTINE = 0.135
DAY_QUARANTINE = 73
INCUBATION_PERIOD = 15

— 250000
— 6
— 35000
II. 1
COUNTRY = "Russia"
DAYS_OF_SIMULATION = 366
COEF_BASE = 0.35
COEF_QUARANTINE = 0.135
DAY_QUARANTINE = 80
INCUBATION_PERIOD = 15

— 950000
— 7
— 140000
III. 2
COUNTRY = "Russia"
DAYS_OF_SIMULATION = 366
COEF_BASE = 0.35
COEF_QUARANTINE = 0.135
DAY_QUARANTINE = 87
INCUBATION_PERIOD = 15

— 4000000
— 8
— 550000
, , -, DAY_QUARANTINE, COEF_QUARANTINE, ( , ). - :
- , ;
- ;
- .
, , . , . , . :
- , , ,
- ,
- ( , ),
- ,
- ,
- … .
Ich schlage den Lesern vor, mit dem Skript herumzuspielen, den Prozess für andere Länder zu simulieren und sich in den Kommentaren abzumelden. Es ist auch interessant, die Simulation durch Hinzufügen weiterer nicht berücksichtigter Faktoren zu komplizieren.