Ensembles neuronaler Netze mit PyTorch und Sklearn

Neuronale Netze sind sehr beliebt. Ihr Hauptvorteil besteht darin, dass sie ziemlich komplexe Daten verallgemeinern können, bei denen andere Algorithmen eine geringe Qualität aufweisen. Was aber, wenn die Qualität des neuronalen Netzes immer noch unbefriedigend ist?


Und hier kommen Ensembles zur Rettung ...


Was sind Ensembles?


Ein Ensemble von Algorithmen für maschinelles Lernen ist die Verwendung mehrerer (nicht unbedingt unterschiedlicher) Modelle anstelle eines. Das heißt, wir trainieren zuerst jedes Modell und kombinieren dann ihre Vorhersagen. Es stellt sich heraus, dass unsere Modelle zusammen ein komplexeres Modell bilden (in Bezug auf die Verallgemeinerungsfähigkeit - die Fähigkeit, Daten zu "verstehen"), das oft als Metamodell bezeichnet wird . Am häufigsten wird das Metamodell nicht anhand unserer anfänglichen Datenstichprobe, sondern anhand der Vorhersagen anderer Modelle trainiert. Es scheint die Erfahrung aller Modelle zu berücksichtigen, und dies hilft, Fehler zu reduzieren.


Planen


  1. Zuerst schauen wir uns ein einfaches PyTorch-Modell an und erhalten dessen Qualität.
  2. Dann werden wir mehrere Modelle mit Scikit-learn zusammenbauen und lernen, wie man ein höheres Level erreicht

Ein einziges Modell


, Digits Sklearn, :


#  
from sklearn.datasets import load_digits
import numpy as np
import matplotlib.pyplot as plt

# ,  
x, y = load_digits(n_class=10, return_X_y=True)

, :


print(x.shape)
>>> (1797, 64)
print(np.unique(y))
>>> array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

index = 0

print(y[index])
plt.imshow(x[index].reshape(8, 8), cmap="Greys")

Schöner Zeh


x[index]
>>> array([ 0.,  0.,  5., 13.,  9.,  1.,  0.,  0.,  0.,  0., 13., 15., 10.,
       15.,  5.,  0.,  0.,  3., 15.,  2.,  0., 11.,  8.,  0.,  0.,  4.,
       12.,  0.,  0.,  8.,  8.,  0.,  0.,  5.,  8.,  0.,  0.,  9.,  8.,
        0.,  0.,  4., 11.,  0.,  1., 12.,  7.,  0.,  0.,  2., 14.,  5.,
       10., 12.,  0.,  0.,  0.,  0.,  6., 13., 10.,  0.,  0.,  0.])

, 0 15. , :


from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

#      
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
                                                    shuffle=True, random_state=42)
print(x_train.shape)
>>> (1437, 64)
print(x_test.shape)
>>> (360, 64)

StandardScaler: -1 1. , — score score' :


scaler = StandardScaler()
scaler.fit(x_train)

:


x_train_scaled = scaler.transform(x_train)
x_test_scaled = scaler.transform(x_test)

Torch'!


import torch
from torch.utils.data import TensorDataset, DataLoader
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam

:


class SimpleCNN(nn.Module):
  def __init__(self):
    super(SimpleCNN, self).__init__()

    #  
    self.conv1 = nn.Conv2d(in_channels=1, out_channels=3, kernel_size=5, stride=1, padding=2)
    self.conv1_s = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=5, stride=2, padding=2)
    self.conv2 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=1)
    self.conv2_s = nn.Conv2d(in_channels=6, out_channels=6, kernel_size=3, stride=2, padding=1)
    self.conv3 = nn.Conv2d(in_channels=6, out_channels=10, kernel_size=3, stride=1, padding=1)
    self.conv3_s = nn.Conv2d(in_channels=10, out_channels=10, kernel_size=3, stride=2, padding=1)

    self.flatten = nn.Flatten()
    #   
    self.fc1 = nn.Linear(10, 10)

  #   ""   
  def forward(self, x):
    x = F.relu(self.conv1(x))
    x = F.relu(self.conv1_s(x))
    x = F.relu(self.conv2(x))
    x = F.relu(self.conv2_s(x))
    x = F.relu(self.conv3(x))
    x = F.relu(self.conv3_s(x))

    x = self.flatten(x)
    x = self.fc1(x)
    x = F.softmax(x)

    return x

:


batch_size = 64 #  
learning_rate = 1e-3 #  
epochs = 200 #   

, PyTorch:


x_train_tensor = torch.tensor(x_train_scaled.reshape(-1, 1, 8, 8).astype(np.float32))
x_test_tensor = torch.tensor(x_test_scaled.reshape(-1, 1, 8, 8).astype(np.float32))

y_train_tensor = torch.tensor(y_train.astype(np.long))
y_test_tensor = torch.tensor(y_test.astype(np.long))

PyTorch , — . — , X y ( ), DataLoader — , <X, y> 64 :


train_dataset = TensorDataset(x_train_tensor, y_train_tensor)
train_loader = DataLoader(train_dataset, batch_size=batch_size)

test_dataset = TensorDataset(x_test_tensor, y_test_tensor)
test_loader = DataLoader(test_dataset, batch_size=batch_size)

, :


simple_cnn = SimpleCNN().cuda() #   gpu,   ,  
criterion = nn.CrossEntropyLoss()
optimizer = Adam(simple_cnn.parameters(), lr=learning_rate)

:


for epoch in range(epochs): #  200 
  simple_cnn.train()
  train_samples_count = 0 #   ,     
  true_train_samples_count = 0 #    
  running_loss = 0

  for batch in train_loader:
    x_data = batch[0].cuda() #      gpu
    y_data = batch[1].cuda()

    y_pred = simple_cnn(x_data)
    loss = criterion(y_pred, y_data)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step() #   

    running_loss += loss.item()

    y_pred = y_pred.argmax(dim=1, keepdim=False)
    true_classified = (y_pred == y_data).sum().item() #       
    true_train_samples_count += true_classified
    train_samples_count += len(x_data) #   

  train_accuracy = true_train_samples_count / train_samples_count
  print(f"[{epoch}] train loss: {running_loss}, accuracy: {round(train_accuracy, 4)}") #  

  #   
  simple_cnn.eval()
  test_samples_count = 0
  true_test_samples_count = 0
  running_loss = 0

  for batch in test_loader:
    x_data = batch[0].cuda()
    y_data = batch[1].cuda()

    y_pred = simple_cnn(x_data)
    loss = criterion(y_pred, y_data)

    loss.backward()

    running_loss += loss.item()

    y_pred = y_pred.argmax(dim=1, keepdim=False)
    true_classified = (y_pred == y_data).sum().item()
    true_test_samples_count += true_classified
    test_samples_count += len(x_data)

  test_accuracy = true_test_samples_count / test_samples_count
  print(f"[{epoch}] test loss: {running_loss}, accuracy: {round(test_accuracy, 4)}")

,

- Torch' , . . 20 .


[180] train loss: 40.52328181266785, accuracy: 0.6966
[180] test loss: 10.813781499862671, accuracy: 0.6583
[181] train loss: 40.517325043678284, accuracy: 0.6966
[181] test loss: 10.811877608299255, accuracy: 0.6611
[182] train loss: 40.517088294029236, accuracy: 0.6966
[182] test loss: 10.814386487007141, accuracy: 0.6611
[183] train loss: 40.515315651893616, accuracy: 0.6966
[183] test loss: 10.812204122543335, accuracy: 0.6611
[184] train loss: 40.5108939409256, accuracy: 0.6966
[184] test loss: 10.808713555335999, accuracy: 0.6639
[185] train loss: 40.50885498523712, accuracy: 0.6966
[185] test loss: 10.80833113193512, accuracy: 0.6639
[186] train loss: 40.50892996788025, accuracy: 0.6966
[186] test loss: 10.809209108352661, accuracy: 0.6639
[187] train loss: 40.508036971092224, accuracy: 0.6966
[187] test loss: 10.806900978088379, accuracy: 0.6667
[188] train loss: 40.507275462150574, accuracy: 0.6966
[188] test loss: 10.79791784286499, accuracy: 0.6611
[189] train loss: 40.50368785858154, accuracy: 0.6966
[189] test loss: 10.799399137496948, accuracy: 0.6667
[190] train loss: 40.499858379364014, accuracy: 0.6966
[190] test loss: 10.795265793800354, accuracy: 0.6611
[191] train loss: 40.498780846595764, accuracy: 0.6966
[191] test loss: 10.796114206314087, accuracy: 0.6639
[192] train loss: 40.497228503227234, accuracy: 0.6966
[192] test loss: 10.790620803833008, accuracy: 0.6639
[193] train loss: 40.44325613975525, accuracy: 0.6973
[193] test loss: 10.657087206840515, accuracy: 0.7
[194] train loss: 39.62049174308777, accuracy: 0.7495
[194] test loss: 10.483307123184204, accuracy: 0.7222
[195] train loss: 39.24516046047211, accuracy: 0.7613
[195] test loss: 10.462445378303528, accuracy: 0.7278
[196] train loss: 39.16947162151337, accuracy: 0.762
[196] test loss: 10.488057255744934, accuracy: 0.7222
[197] train loss: 39.196797251701355, accuracy: 0.7634
[197] test loss: 10.502906918525696, accuracy: 0.7222
[198] train loss: 39.395434617996216, accuracy: 0.7537
[198] test loss: 10.354896545410156, accuracy: 0.7472
[199] train loss: 39.331292152404785, accuracy: 0.7509
[199] test loss: 10.367400050163269, accuracy: 0.7389

, : .


, : 74% . Not great, not terrible.


!


Bagging. : , , . : "" , - . .


sklearn ensembles, . — , BaggingClassifier:


import sklearn
from sklearn.ensemble import BaggingClassifier

. sklearn, — , sklearn.base.BaseEstimator. , . fit ( ), predict_proba, ( , ), predict ( ), .


, "" .


. , , .


-, ( 2 — get_params set_params), , . , net_type, __init__ net_type.


-, , , ( sklearn , ) copy, deepcopy . , , () , , .


class PytorchModel(sklearn.base.BaseEstimator):
  def __init__(self, net_type, net_params, optim_type, optim_params, loss_fn,
               input_shape, batch_size=32, accuracy_tol=0.02, tol_epochs=10,
               cuda=True):
    self.net_type = net_type #    
    self.net_params = net_params #  
    self.optim_type = optim_type #    
    self.optim_params = optim_params #  
    self.loss_fn = loss_fn #   loss'

    self.input_shape = input_shape #   
    self.batch_size = batch_size #  
    self.accuracy_tol = accuracy_tol #  ,    -- 
    self.tol_epochs = tol_epochs #      
    self.cuda = cuda #    gpu

: fit. , — , Loss, . : , ? . , 200 ( ). , . — , accuracy . , accuracy . , (tol_epochs) ( accuracy , accuracy_tol).


  def fit(self, X, y):
    self.net = self.net_type(**self.net_params) #        
    # `**self.net_params` ,   -            
    if self.cuda:
      self.net = self.net.cuda() #    gpu,    
    self.optim = self.optim_type(self.net.parameters(), **self.optim_params) #   ,  
    #         

    uniq_classes = np.sort(np.unique(y)) #   
    self.classes_ = uniq_classes #      sklearn --      `classes_`

    X = X.reshape(-1, *self.input_shape) #         
    #       DataLoader
    x_tensor = torch.tensor(X.astype(np.float32))
    y_tensor = torch.tensor(y.astype(np.long))
    train_dataset = TensorDataset(x_tensor, y_tensor)
    train_loader = DataLoader(train_dataset, batch_size=self.batch_size,
                              shuffle=True, drop_last=False)
    last_accuracies = [] #    accuracy    `tol_epochs` 
    epoch = 0
    keep_training = True
    while keep_training:
      self.net.train() #        (,    BatchNormalization)
      train_samples_count = 0 #    
      true_train_samples_count = 0 #     

      for batch in train_loader:
        x_data, y_data = batch[0], batch[1]
        if self.cuda:
          x_data = x_data.cuda()
          y_data = y_data.cuda()

        #    
        y_pred = self.net(x_data)
        loss = self.loss_fn(y_pred, y_data)

        #   
        self.optim.zero_grad()
        loss.backward()
        self.optim.step()

        y_pred = y_pred.argmax(dim=1, keepdim=False) #    ,     
        true_classified = (y_pred == y_data).sum().item() #     
        true_train_samples_count += true_classified
        train_samples_count += len(x_data)

      train_accuracy = true_train_samples_count / train_samples_count #  accuracy
      last_accuracies.append(train_accuracy)

      if len(last_accuracies) > self.tol_epochs:
        last_accuracies.pop(0)

      if len(last_accuracies) == self.tol_epochs:
        accuracy_difference = max(last_accuracies) - min(last_accuracies) # ,     accuracy   `tol_epochs` 
        if accuracy_difference <= self.accuracy_tol:
          keep_training = False #   ,  

. — , Loss, - :


  def predict_proba(self, X, y=None):
    #   ,    fit,  DataLoader,     
    X = X.reshape(-1, *self.input_shape)
    x_tensor = torch.tensor(X.astype(np.float32))
    if y:
      y_tensor = torch.tensor(y.astype(np.long))
    else:
      y_tensor = torch.zeros(len(X), dtype=torch.long)
    test_dataset = TensorDataset(x_tensor, y_tensor)
    test_loader = DataLoader(test_dataset, batch_size=self.batch_size,
                              shuffle=False, drop_last=False)

    self.net.eval() #    ,   `train`,     BatchNormalization,    -    
    predictions = [] # ,   
    for batch in test_loader:
      x_data, y_data = batch[0], batch[1]
      if self.cuda:
        x_data = x_data.cuda()
        y_data = y_data.cuda()

      y_pred = self.net(x_data)

      predictions.append(y_pred.detach().cpu().numpy()) #   ,    numpy-      

    predictions = np.concatenate(predictions) #          
    return predictions

:


  def predict(self, X, y=None):
    predictions = self.predict_proba(X, y) #   
    predictions = predictions.argmax(axis=1) #    ,    
    return predictions

class PytorchModel(sklearn.base.BaseEstimator):
  def __init__(self, net_type, net_params, optim_type, optim_params, loss_fn,
               input_shape, batch_size=32, accuracy_tol=0.02, tol_epochs=10,
               cuda=True):
    self.net_type = net_type
    self.net_params = net_params
    self.optim_type = optim_type
    self.optim_params = optim_params
    self.loss_fn = loss_fn

    self.input_shape = input_shape
    self.batch_size = batch_size
    self.accuracy_tol = accuracy_tol
    self.tol_epochs = tol_epochs
    self.cuda = cuda

  def fit(self, X, y):
    self.net = self.net_type(**self.net_params)
    if self.cuda:
      self.net = self.net.cuda()
    self.optim = self.optim_type(self.net.parameters(), **self.optim_params)

    uniq_classes = np.sort(np.unique(y))
    self.classes_ = uniq_classes

    X = X.reshape(-1, *self.input_shape)
    x_tensor = torch.tensor(X.astype(np.float32))
    y_tensor = torch.tensor(y.astype(np.long))
    train_dataset = TensorDataset(x_tensor, y_tensor)
    train_loader = DataLoader(train_dataset, batch_size=self.batch_size,
                              shuffle=True, drop_last=False)
    last_accuracies = []
    epoch = 0
    keep_training = True
    while keep_training:
      self.net.train()
      train_samples_count = 0
      true_train_samples_count = 0

      for batch in train_loader:
        x_data, y_data = batch[0], batch[1]
        if self.cuda:
          x_data = x_data.cuda()
          y_data = y_data.cuda()

        y_pred = self.net(x_data)
        loss = self.loss_fn(y_pred, y_data)

        self.optim.zero_grad()
        loss.backward()
        self.optim.step()

        y_pred = y_pred.argmax(dim=1, keepdim=False)
        true_classified = (y_pred == y_data).sum().item()
        true_train_samples_count += true_classified
        train_samples_count += len(x_data)

      train_accuracy = true_train_samples_count / train_samples_count
      last_accuracies.append(train_accuracy)

      if len(last_accuracies) > self.tol_epochs:
        last_accuracies.pop(0)

      if len(last_accuracies) == self.tol_epochs:
        accuracy_difference = max(last_accuracies) - min(last_accuracies)
        if accuracy_difference <= self.accuracy_tol:
          keep_training = False

  def predict_proba(self, X, y=None):
    X = X.reshape(-1, *self.input_shape)
    x_tensor = torch.tensor(X.astype(np.float32))
    if y:
      y_tensor = torch.tensor(y.astype(np.long))
    else:
      y_tensor = torch.zeros(len(X), dtype=torch.long)
    test_dataset = TensorDataset(x_tensor, y_tensor)
    test_loader = DataLoader(test_dataset, batch_size=self.batch_size,
                              shuffle=False, drop_last=False)

    self.net.eval()
    predictions = []
    for batch in test_loader:
      x_data, y_data = batch[0], batch[1]
      if self.cuda:
        x_data = x_data.cuda()
        y_data = y_data.cuda()

      y_pred = self.net(x_data)

      predictions.append(y_pred.detach().cpu().numpy())

    predictions = np.concatenate(predictions)
    return predictions

  def predict(self, X, y=None):
    predictions = self.predict_proba(X, y)
    predictions = predictions.argmax(axis=1)
    return predictions

, :


base_model = PytorchModel(net_type=SimpleCNN, net_params=dict(), optim_type=Adam,
                          optim_params={"lr": 1e-3}, loss_fn=nn.CrossEntropyLoss(),
                          input_shape=(1, 8, 8), batch_size=32, accuracy_tol=0.02,
                          tol_epochs=10, cuda=True)

base_model.fit(x_train_scaled, y_train) #  

preds = base_model.predict(x_test_scaled) #    
true_classified = (preds == y_test).sum() #    
test_accuracy = true_classified / len(y_test) # accuracy

print(f"Test accuracy: {test_accuracy}")
>>> Test accuracy: 0.7361111111111112

.


meta_classifier = BaggingClassifier(base_estimator=base_model, n_estimators=10) # ,        

meta_classifier.fit(x_train_scaled.reshape(-1, 64), y_train) #    ,     ,  reshape'
>>> BaggingClassifier(
           base_estimator=PytorchModel(accuracy_tol=0.02, batch_size=32,
              cuda=True, input_shape=(1, 8, 8),
              loss_fn=CrossEntropyLoss(),
              net_params={},
              net_type=<class '__main__.SimpleCNN'>,
              optim_params={'lr': 0.001},
              optim_type=<class 'torch.optim.adam.Adam'>,
              tol_epochs=10),
          bootstrap=True, bootstrap_features=False, max_features=1.0,
          max_samples=1.0, n_estimators=10, n_jobs=None,
          oob_score=False, random_state=None, verbose=0,
          warm_start=False)

score accuracy :


print(meta_classifier.score(x_test_scaled.reshape(-1, 64), y_test))
>>> 0.95


, . . . , , ( "" - ).


?


-, . , Loss' - .


-, Boosting. Bagging' , , . ( ) . sklearn, Loss - .


, . , "" . , .



, . — - , , , , , .


. , Data science' . Computer vision, . ( — !) — FARADAY Lab. — , .


c:




All Articles