
مرحبا يا هابر! نواصل نشر مراجعات للمقالات العلمية من أعضاء مجتمع Open Data Science من قناة #article_essense. إذا كنت ترغب في استقبالهم قبل أي شخص آخر - انضم إلى المجتمع !
مقالات اليوم:
- تصنيف وترتيب قابل للتمييز السريع (Google Brain، 2020)
- MaxUp: A Simple Way to Improve Generalization of Neural Network Training (UT Austin, 2020)
- Deep Nearest Neighbor Anomaly Detection (Jerusalem, Israel, 2020)
- AutoML-Zero: Evolving Machine Learning Algorithms From Scratch (Google, 2020)
- SpERT: Span-based Joint Entity and Relation Extraction with Transformer Pre-training (RheinMain University, Germany, 2019)
- High-Resolution Daytime Translation Without Domain Labels (Samsung AI Center, Moscow, 2020)
- Incremental Few-Shot Object Detection (UK, 2020)
1. Fast Differentiable Sorting and Ranking
: Mathieu Blondel, Olivier Teboul, Quentin Berthet, Josip Djolonga (Google Brain, 2020)
: ( belskikh)
Google Brain (O(n logn) , O(n) ) end2end . : differentiable Spearman’s rank correlation coefficient and soft least trimmed squares
(permutations). , (permutohedron) ( n- , n- , n! , ). .

:
- Top-k classification loss function
- Label ranking via soft Spearman’s rank correlation coefficient
- Robust regression via soft least trimmed squares
Top-k classification loss function
CIFAR-10 CIFAR-100 (4 Conv2D with 2 max- pooling layers, ReLU activation, 2 fully connected layers with batch norm on each) .
r_Q r_E. , (nlogn vs n^2)

Label ranking via soft Spearman’s rank correlation coefficient , Robust regression via soft least trimmed squares -k , . , .. ..
, , — , .
2. MaxUp: A Simple Way to Improve Generalization of Neural Network Training
: Chengyue Gong, Tongzheng Ren, Mao Ye, Qiang Liu (UT Austin, 2020)
: ( belskikh)
, -1 85.5% 85.8% (EfficientNet B-8) .
: m , ( ), . ( , ).
, Maxup — gradient-norm regularization . Maxup , .
ResNet-50 , . CutMix+MaxUp EfficientNet B-7 85.8% -1. .

NLP — Penn Treebank WikiText-2.
Adversarial Certification ( adversarial .
MaxUp (, BERT), transfer semi-supervised learning.
3. Deep Nearest Neighbor Anomaly Detection
: Liron Bergman, Niv Cohen, Yedid Hoshen (Jerusalem, Israel, 2020)
: ( belskikh)
kNN - () SOTA anomaly detection , group anomaly detection.
kNN anomaly detection.
, kNN.
Semi-supervised Anomaly Detection:
Unsupervised Anomaly Detection:
- ;
- , , , kNN ( 50%);
- "", .1 (Semi-supervised Anomaly Detection).
Group Image Anomaly Detection:
, () ( DN2 (Deep Nearest-Neighbors)).

:
group anomaly detection mean ( max concat).

: , ResNet , - angular , . " - kNN -", .
4. AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
: Esteban Real, Chen Liang, David R. So, Quoc V. Le (Google, 2020)
:: GitHub project
: ( belskikh)
AutoML — , , ML — : , , , , .. — .
— . , . "typically learned by high-school level". , .
- — Setup, Predict Learn. evaluation , , .
, , , :
- / ;
- ;
- .
CIFAR-10 MNIST . , , .

. :
- , ;
- ;
- ( );
- , , , .

( ) Figure 5 , , , :
, noisy ReLU.- /
LR decay. - ( 10 CIFAR, 2 )
. , , - .
- , , AutoML-Zero -, , .
: Markus Eberts, Adrian Ulges (RheinMain University, Germany, 2019)
:: GitHub project
: ( Vadbeg)
, , entity recognition, relation classification.
Span-based – (entity). , . :
- , ( entity) .
- ( , ) .
- pre-trained BERT ( –> ).

:
BERT. byte-pair encoded ( treehouse, a tree house). . BERT n + 1 (n – ), (n + 1)’ . , . : {we, will, rock, you} {we}, {we, will}, {will, rock, you}, ..
:
Span classification:
- (, s3), . maxpooling.
- width embeddings . – . , : - , .
- width embedding maxpooling .
- (n + 1)’ BERT. .
- softmax classifier. span’ ( None)
Span filtering:
. None spans , 10.
Relation classification:
- , , . 1.c
- –> (). maxpooling. -> .
- ( ). sigmoid-layer classifier. . None.
. entity recognition relation classification ( ). . . , 100 .
( ). ( , ).
BERT. pretrained BERT ( — SciBERT).
. SOTA :
- Relation Extraction on CoNLL04;
- Relation Extraction on ADE Corpus ;
- Joint Entity and Relation Extraction on SciERC.
6. High-Resolution Daytime Translation Without Domain Labels
: Ivan Anokhin, Pavel Solovev, Denis Korzhenkov, Alexey Kharlamov, Taras Khakhulin, Alexey Silvestrov, Sergey Nikolenko, Victor Lempitsky, Gleb Sterkin (Samsung AI Center, Moscow, 2020)
:: Video :: Blog
: ( dkorzhenkov)
HiDT — image-to-image , .
: — , — .

img2img translation , :
- CycleGAN , , ( , - ).
- UNIT ( , — “ ”. , — ).
- MUNIT ( , — , )
- FUNIT . , . . . — .
?
( , — , ). HiDT . , , , ( , ).
, , — “ ”, . — , ( — projection discriminator).
, , . hi-res , lo-res multiframe image restoration.

, . artistic style transfer.
style transfer: — , o — .

7. Incremental Few-Shot Object Detection
: Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy Hospedales, Tao Xiang (UK, 2020)
: ( belskikh)
CentreNet Incremental Few-Shot Detection (iFSD) ( ). few-shot -, + .
anchor-box free CentreNet ( Objects as Points), , Hourglass () , . . 3 .
, , ( , . Few Shot Vid-to-Vid), .
, / :
- CentreNet .
- , , .
- - , — .
- , . .. ground truth , 1, ground truth . L1 ground truth.
- .

-, 1, 5 10 . + - .
.

7 2- .